9.1 – Translate Figures and Use

Image – An image is a new figure produced from the transformation of a figure.

Preimage – A preimage is the original figure in the transformation of a figure.

Isometry – An isometry is a transformation that preserves length and angle measure.

Vector – A vector is a quantity that has both direction and magnitude (size).

A vector can also be named using *component form*. The <u>component form</u> $\langle x, y \rangle$ of a vector lists the **horizontal** and **vertical** change from the initial point to the terminal point. The component form of <u>CD</u> is $\langle 2, 3 \rangle$.

Your Notes

You can use prime

notation to name an image. For

preimage is △ABC, then its image is △A'B'C', read as "triangle A prime, B prime, C prime."

example, if the

Example 1 Translate a figure in the coordinate plane

Graph quadrilateral ABCD with vertices A(-2, 6), B(2, 4), C(2, 1), and D(-2, 3). Find the image of each vertex after the translation $(x, y) \rightarrow (x + 3, y - 3)$. Then graph the image using prime notation.

a	b.		TTTT
~		5	R
н			

The vertices of $\triangle ABC$ are A(0, 4), B(2, 3), and C(1, 0). Translate $\triangle ABC$ using the vector $\langle -4, 1 \rangle$.

9.2 – Use Properties of Matrices

9.3 – Perform Reflections

Line of reflection - In a reflection, the mirror line is called the line of reflection.

The vertices of $\triangle ABC$ are Graph the reflection of \triangle	a A(1, 2), B(3, 0), and C(5, 3). ABC described.
a. In the line $n: x = 2$	b. In the line $m: y = 3$
apoints of CD are $C(-2, 1)$ gment in the line $y = x$. (2) and D(1, 2). Reflect Araph the segment and
ge.	
COORDINATE RU	LES FOR REFLECTIONS
COORDINATE RU • If (a, b) is reflect point (LES FOR REFLECTIONS ted in the x-axis, its image is the).
 COORDINATE RU If (a, b) is reflect point (LES FOR REFLECTIONS ted in the x-axis, its image is the _). ted in the y-axis, its image is the _).
ge. COORDINATE RU • If (a, b) is reflect point (• If (a, b) is reflect point (• If (a, b) is reflect point (LES FOR REFLECTIONS ted in the x-axis, its image is the). ted in the y-axis, its image is the). ted in the line $y = x$, its image is the

THEOREM 9.2: REFLECTION THEOREM A reflection is an isometry. $\triangle ABC = \triangle A'B'C$

Your Notes

Example 5 Use matrix multiplication to reflect a polygon

The vertices of $\triangle DEF$ are D(1, 2), E(2, 3), and F(4, 1). Find the reflection of $\triangle DEF$ in the y-axis using matrix multiplication. Graph $\triangle DEF$ and its image.

9.4 – Perform Rotations

9.5 – Apply Compositions of Transformations

x

THEOREM 9.4: COMPOSITION THEOREM

The composition of two (or more) isometries is an isometry.

THEOREM 9.5: REFLECTIONS IN PARALLEL LINES THEOREM

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as

If P" is the image of P, then:

 PP" = 2d, where d is the distance between k and m.

- PP" is perpendicular to k and m, and

Example 3 Use Theorem 9.5

а

In the diagram, a reflection in line k maps \overline{GF} to $\overline{G'F'}$. A reflection in line m maps $\overline{G'F'}$ to $\overline{G''F''}$. Also, FA = 6 and DF'' = 3.

- Name any segments congruent to each segment: GF, FA, and GB.
- b. Does AD = BC? Explain.
- c. What is the length of GG"?

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a about

The angle of rotation is $2x^\circ$, where x° is the measure of the acute or right angle formed by k and m.

Example 4 Use Theorem 9.6

In the diagram, the figure is reflected in line k. The image is then reflected in line m. Describe a single transformation that maps F to F".

9.6 – Identify Symmetry

9.7 – Identify and Perform Dilations

Scalar multiplication – Scalar multiplication is the process of multiplying each element of a matrix by a real number or scalar.

