9.1 - Translate Figures and Use

Image - An image is a new figure produced from the transformation of a figure.
Preimage - A preimage is the original figure in the transformation of a figure.
Isometry - An isometry is a transformation that preserves length and angle measure.
Vector - A vector is a quantity that has both direction and magnitude (size).
A vector can also be named using component form. The component form $\langle x, y\rangle$ of a vector lists the horizontal and vertical change from the initial point to the terminal point. The component form of $C D$ is $\langle 2,3\rangle$.

Your Notes
You can use prime notation to name an image. For example, if the preimage is $\triangle A B C$, then its image is $\triangle A^{\prime} B^{\prime} C^{\prime}$, read as "triangle A prime, B prime, C prime."

Example 1 Translate a figure in the coordinate plane
Graph quadrilateral $A B C D$ with vertices $A(-2,6)$, $B(2,4), C(2,1)$, and $D(-2,3)$. Find the image of each vertex after the translation $(x, y) \rightarrow(x+3, y-3)$. Then graph the image using prime notation.

Example 2 Write a translation rule and verify congruence

Write a rule for the translation of $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then verify that the transformation is an isometry.

Your Notes

Example 3 Identify vector components

Name the vector and write its component form.
a.

b.

Example 4 Use a vector to translate a figure

The vertices of $\triangle A B C$ are $A(0,4), B(2,3)$, and $C(1,0)$. Translate $\triangle A B C$ using the vector $\langle-4,1\rangle$.

9.2 - Use Properties of Matrices

- Definition of Matrix A rectangular arrangement of numbers in rows and columns.
- Ex): Matrix A below has two rows and three columns.

$$
A=
$$

Note: * The DIMENSIONS of matrix A are 2×3 (reod $/ 2$ by $\left.3^{*}\right)$

* The numbers in a matrix are its ENTRIES.
Ex.) The entry in the second row and third column is 5 .

What is a matrix?

Your Notes

Example 2 Add and subtract matrices
a. $\left[\begin{array}{ll}4 & -2 \\ 2 & -3\end{array}\right]+\left[\begin{array}{rr}1 & 2 \\ 5 & -6\end{array}\right]$
b. $\left[\begin{array}{rrr}7 & 4 & 5 \\ 1 & -2 & 8\end{array}\right]-\left[\begin{array}{rrr}3 & -6 & 5 \\ 0 & 7 & 1\end{array}\right]$

Example 3 Represent a translation using matrices
In onfer to add two matrices, they must have the same fimensions, so the translation matrix here must have three columns like the polygon matris.

The matrix $\left[\begin{array}{rrr}2 & 3 & 4 \\ -3 & 2 & 0\end{array}\right]$ represents $\triangle A B C$. Find the image matrix that represents the translation of $\triangle A B C$ 4 units left and 1 unit down. Then graph $\triangle A B C$ and its image.

Example 4 Multiply matrices

Multiply $\left[\begin{array}{ll}0 & 4 \\ 5 & 2\end{array}\right]\left[\begin{array}{rr}-4 & 1 \\ 8 & -3\end{array}\right]$.

9.3 - Perform Reflections

Line of reflection - In a reflection, the mirror line is called the line of reflection.

Example 1 Graph reflections in horizontal and vertical lines

The vertices of $\triangle A B C$ are $A(1,2), B(3,0)$, and $C(5,3)$. Graph the reflection of $\triangle A B C$ described.
a. In the line $n: x=2$
b. In the line $m: y=3$

Example 2 Graph a reflection in $y=x$

The endpoints of $C D$ are $C(-2,2)$ and $D(1,2)$. Reflect the segment in the line $y=x$. Graph the segment and its image.

COORDINATE RULES FOR REFLECTIONS

- If (a, b) is reflected in the x-axis, its image is the point (\qquad).
- If (a, b) is reflected in the y-axis, its image is the point \qquad , _-)).
- If (a, b) is reflected in the line $y=x$, its image is the point (\qquad I.
- If (a, b) is reflected in the line $y=-x$, its image is the point (\qquad . \qquad).

THEOREM 9.2: REFLECTION THEOREM
A reflection is an isometry.

$\triangle A B C=\triangle A Z C^{\prime}$

REFLECTION MATRICES
Reflection in the x-axis.

Your Notes

Example 5 Use matrix multiplication to reflect a polygon

The vertices of $\triangle D E F$ are $D(1,2), E(2,3)$, and $F(4,1)$. Find the reflection of $\triangle D E F$ in the y-axis using matrix multiplication. Graph $\triangle D E F$ and its image.

9.4 - Perform Rotations

COORDINATE RULES FOR ROTATIONS ABOUT THE ORIGIN

When a point (a, b) is rotated counterclockwise about the origin, the following are true:

1. For a rotation of 90°,

$$
(a, b) \rightarrow(\square, \square)
$$

2. For a rotation of 180°,
$(a, b) \rightarrow($ \qquad , \qquad).
3. For a rotation of 270°, $(a, b) \rightarrow($ \qquad
\qquad).

Example 2 Rotate a figure using the coordinate rules
Graph quadrilateral $K L M N$ with vertices $K(3,2), L(4,2)$, $M(4,-3)$, and $N(2,-1)$. Then rotate the quadrilateral 270° about the origin.
2. Graph KLMN in Example 2. Then rotate the quadrilateral 90° about the origin.

THEOREM 9.3: ROTATION THEOREM

A rotation is an isometry.

Example 4 Find side lengths in a rotation
The quadrilateral is rotated about P. Find the value of y.

4. The triangle is rotated about P. Find the value of b.

9.5 - Apply Compositions of Transformations

Glide Reflection

1. A translation maps P onto P^{\prime}.
2. A reflection in a line k parallel to the direction of the translation maps P^{\prime} to $\mathrm{P}^{\prime \prime}$.

Line of Reflection

Example 1 Find the image of a glide reflection

The vertices of $\triangle A B C$ are $A(2,1), B(5,3)$, and $C(6,2)$. Find the image of $\triangle A B C$ after the glide reflection.
Translation: $(x, y) \rightarrow(x-8, y)$
Reflection: in the x-axis

Example 2 Find the image of a composition

The endpoints of $\overline{C D}$ are $C(-2,6)$ and $D(-1,3)$. Graph the image of $C D$ after the composition.

Reflection: in the y-axis
Rotation: 90° about the origin

THEOREM 9.4: COMPOSITION THEOREM

The composition of two (or more) isometries is an isometry.

THEOREM 9.5: REFLECTIONS IN PARALLEL LINES THEOREM

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a \qquad .

If $P^{\prime \prime}$ is the image of P, then:

1. $\overline{P P^{\prime \prime}}$ is perpendicular to k and m, and
2. $P P^{\prime \prime}=2 d$, where d is the
 distance between k and m.

Example 3 Use Theorem 9.5

In the diagram, a reflection in line k maps $\overline{G F}$ to $\overline{G^{\prime} F^{\prime}}$. A reflection in line m maps $\overline{G^{\prime} F^{\prime}}$ to $\overline{G^{\prime \prime} F^{\prime \prime}}$. Also, $F A=6$ and $D F^{\prime \prime}=3$.
a. Name any segments congruent to each segment: $\overline{G F}, \overline{F A}$, and $\overline{G B}$.
b. Does $A D=B C$? Explain.
c. What is the length of $\overline{\mathcal{G G}^{\prime \prime}}$?

THEOREM 9.6: REFLECTIONS IN INTERSECTING LINES THEOREM

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a \qquad about

The angle of rotation is $2 x^{\circ}$, where
\qquad
 x° is the measure of the acute or right angle formed by k and m.

Example 4 Use Theorem 9.6

In the diagram, the figure is reflected in line k. The image is then reflected in line m. Describe a single transformation that maps F to $F^{\prime \prime}$.

9.6 - Identify Symmetry

Example 1 Identify lines of symmetry

How many lines of symmetry does the figure have?
a. \qquad
b.

c.

Example 2 Identify rotational symmetry

Does the figure have rotational symmetry? If so, describe any rotations that map the figure onto itself.
a. Square
b. Regular hexagon
c. Kite

Example 3 Identify symmetry

Identify the line symmetry and rotational symmetry of the figure at the right.

Checkpoint How many lines of symmetry does the figure have?

In Exercises 3 and 4, does the figure have rotational symmetry? If so, describe any rotations that map the figure onto itself.
3.

5. Describe the lines of symmetry and rotational symmetry of the figure at the right.

9.7 - Identify and Perform Dilations

Scalar multiplication - Scalar multiplication is the process of multiplying each element of a matrix by a real number or scalar.

Example 1 Identify dilations

Find the scale factor of the dilation. Then tell whether the dilation is a reduction or an enlargement.
a.

b.

Checkpoint Simplify the product.
3. $4\left[\begin{array}{rrr}-6 & 3 & 2 \\ 5 & -1 & 4\end{array}\right] \quad$ 4. $-3\left[\begin{array}{rrr}5 & -1 & -2 \\ -2 & 0 & 4\end{array}\right]$

Example 4 Use scalar multiplication in a dilation
The vertices of quadrilateral $A B C D$ are $A(-3,0)$, $B(0,6), C(3,6)$, and $D(3,3)$. Use scalar multiplication to find the image of $A B C D$ after a dilation with its center at the origin and a scale factor of $\frac{1}{3}$. Graph $A B C D$ and its image.

Example 5 Find the Image of a composition

The vertices of $\triangle K L M$ are $K(-3,0), L(-2,1)$, and $M(-1,-1)$. Find the image of $\triangle K L M$ after the given composition.

Translation: $(x, y) \rightarrow(x+4, y+2)$
Dilation: centered at the origin with a scale factor of 2
6. A segment has the endpoints $C(-2,2)$ and $D(2,2)$. Find the image of $\overline{C D}$ after a 90° rotation about the origin followed by a dilation with its center at the origin and a scale factor of 2.

