8.1 - Find Angle Measures in Polygons

GEOMETRIC SHAPES

POLYGONS

Square - 4 sides
Pentagon -5 sides Hexagon -6 sides Heptagon -7 sides

WWW.FUN-STUFF-TO-DO.COM

THEOREM 8.1: POLYGON INTERIOR ANGLES THEOREM

The sum of the measures of the interior angles of a convex n-gon is ($n-$ \qquad) \qquad -
 $m \angle 1+m \angle 2+\cdots+m \angle n=(n-$ \qquad). \qquad

COROLLARY TO THEOREM 8.1: INTERIOR ANGLES OF A QUADRILATERAL

The sum of the measures of the interior angles of a quadrilateral is \qquad .

Example 1
 Find the sum of angle measures in a polygon

Find the sum of the measures of the interior angles of a convex hexagon.

Solution

A hexagon has \qquad sides. Use the Polygon Interior Angles Theorem.
(n - \qquad
\qquad
\qquad - \qquad) \qquad Substitute
\square
$=$ \qquad - \qquad Subtract. Multiply.

Example 2 Find the number of sides of a polygon
The sum of the measures of the interior angles of a convex polygon is 1260°. Classify the polygon by the number of sides.

Example 3 Find an unknown interior angle measure
Find the value of x in the diagram shown.

1. Find the sum of the measures of the interior angles of the convex decagon.

2. The sum of the measures of the interior angles of a convex polygon is 1620°. Classify the polygon by the number of sides.
3. Use the diagram at the right.

Find $m \angle K$ and $m \angle L$.

THEOREM 8.2: POLYGON EXTERIOR ANGLES THEOREM

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is \qquad .
$m \angle 1+m \angle 2+\cdots+m \angle n=$ \qquad

Example 4 Find unknown exterior angle measures

Find the value of x in the diagram shown.

Example $5 \quad$ Find angle measures in regular polygons

Lamps The base of a lamp is in the shape of a regular 15-gon. Find (a) the measure of each interior angle and (b) the measure of each exterior angle.
4. A convex pentagon has exterior angles with measures $66^{\circ}, 77^{\circ}, 82^{\circ}$, and 62°. What is the measure of an exterior angle at the fifth vertex?
5. Find the measure of (a) each interior angle and (b) each exterior angle of a regular nonagon.

8.2 - Use Properties of Parallelograms

Parallelogram - a parallelogram is a quadrilateral with both pairs of opposite sides parallel.

THEOREM 8.3

If a quadrilateral is a parallelogram, then its opposite sides are congruent.
If $P Q R S$ is a parallelogram, then

\qquad $\cong \overline{R S}$ and $\overline{Q R} \cong$ \qquad -.

THEOREM 8.4

If a quadrilateral is a parallelogram, then its opposite angles are congruent. If $P Q R S$ is a parallelogram, then
 $\angle P \cong$ \qquad and \qquad $\cong \angle S$.

Example 1 Use properties of parallelograms
Find the values of x and y.

THEOREM 8.5

If a quadrilateral is a parallelogram, then its consecutive angles are

If $P Q R S$ is a parallelogram, then $x^{\circ}+y^{\circ}=$ \qquad .
(V) Checkpoint Find the indicated measure in $\square K L M N$ shown at the right.

THEOREM 8.6

If a quadrilateral is a parallelogram, then its diagonals each other.

$$
\begin{aligned}
& \overline{Q M} \cong-\quad \text { and } \\
& \overline{P M} \cong
\end{aligned}
$$

5. Given that $\square F G H J$ is a parallelogram, find $M H$ and $F H$.

8.3 - Show that a Quadrilateral is a Parallelogram

THEOREM 8.7

If both pairs of opposite \qquad of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{A B} \cong$ \qquad and $\overline{B C} \cong$ \qquad , then $A B C D$ is a parallelogram.

THEOREM 8.8

If both pairs of opposite \qquad of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong$ \qquad and $\angle B \cong$ \qquad , then $A B C D$ is a parallelogram.

Example 1 Solve a real-world problem
Basketball In the diagram at the right, $\overline{A B}$ and $\overline{D C}$ represent adjustable supports of a basketball hoop. Explain why $\overline{A D}$ is always parallel to $\overline{B C}$.

THEOREM 8.9

If one pair of opposite sides of a quadrilateral are \qquad and \qquad , then
the quadrilateral is a parallelogram.
If $\overline{B C}$ \qquad $\overline{A D}$ and $\overline{B C}$ \qquad $\overline{A D}$, then
 $A B C D$ is a parallelogram.

THEOREM 8.10

If the diagonals of a quadrilateral
\qquad each other, then the quadrilateral is a parallelogram.

If $\overline{B D}$ and $\overline{A C}$ \qquad each other, then $A B C D$ is a parallelogram.

Lights The headlights of a car have the shape shown at the right. Explain how you know that $\angle B \cong \angle D$.

Checkpoint Complete the following exercises.

1. In quadrilateral $G H J K, m \angle G=55^{\circ}, m \angle H=125^{\circ}$, and $m \angle J=55^{\circ}$. Find $m \angle K$. What theorem can you use to show that GHJK is a parallelogram?
2. What theorem can you use to show that the quadrilateral is a parallelogram?

Example 3 Use algebra with parallelograms

For what value of x is quadrilateral PQRS a parallelogram?

CONCEPT SUMMARY: WAYS TO PROVE A

 QUADRILATERAL IS A PARALLELOGRAM1. Show both pairs of opposite sides are parallel. (Definition)
2. Show both pairs of opposite sides are congruent. (Theorem 8.7)
3. Show both pairs of opposite angles are congruent. (Theorem 8.8)

4. Show one pair of opposite sides are congruent and parallel. (Theorem 8.9)
5. Show the diagonals bisect each other. (Theorem 8.10)

8.4 - Show that a Quadrilateral is a Parallelogram

Rhombus - A rhombus is a parallelogram with four congruent sides.
Rectangle - A rectangle is a parallelogram with four right angles.
Square - A square is a parallelogram with four congruent sides and four right angles.

RHOMBUS COROLLARY

A quadrilateral is a rhombus if and only if it has four congruent \qquad .
$A B C D$ is a rhombus if and only if
 $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$.

RECTANGLE COROLLARY
A quadrilateral is a rectangle if and only if it has four \qquad .
$A B C D$ is a rectangle if and only if
 $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

SQUARE COROLLARY

A quadrilateral is a square if and only if it is a \qquad and a \qquad .
$A B C D$ is a square if and only if
$\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and

$\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Example 1 Use properties of special quadrilaterals

For any rhombus RSTV, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning.
a. $\angle S \cong \angle V$
b. $\angle T \cong \angle V$

Example 2 Classify special quadrilaterals

Classify the special quadrilateral. Explain your reasoning.
The quadrilateral has four congruent
 One of the angles is not a \qquad _, so the rhombus is not also a \qquad
\qquad . By the Rhombus Corollary, the quadrilateral is a \qquad -

1. For any square $C D E F$, is it always or sometimes true that $\overline{C D} \cong \overline{D E}$? Explain your reasoning.
2. A quadrilateral has four congruent sides and four congruent angles. Classify the quadrilateral.

THEOREM 8.11

A parallelogram is a rhombus if and only if its diagonals are \qquad
\qquad

$\square A B C D$ is a rhombus if and only if
\qquad \perp \qquad -

THEOREM 8.12

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$
 bisects \angle \qquad and \angle \qquad and $\overline{B D}$ bisects \qquad and \angle \qquad .

THEOREM 8.13

A parallelogram is a rectangle if and only if its diagonals are \qquad $\square A B C D$ is a rectangle if and only if

\qquad \cong \qquad -

Example 4 Solve a real-world problem

Framing You are building a frame for a painting. The measurements of the frame are shown at the right.
a. The frame must be a rectangle. Given the measurements in the
 diagram, can you assume that it is? Explain.
b. You measure the diagonals of the frame. The diagonals are about 25.6 inches. What can you conclude about the shape of the frame?

Example 3 List properties of special parallelograms

Sketch rhombus FGHJ. List everything you know about it.

Solution

By definition, you need to draw a figure with the following properties:

- The figure is a \qquad -"
- The figure has four congruent \qquad "

Because $F G H J$ is a parallelogram, it has these properties:

- Opposite sides are \qquad and \qquad .
- Opposite angles are \qquad Consecutive angles are \qquad - "
- Diagonals \qquad each other.
By Theorem 8.11, the diagonals of $F G H J$ are
\qquad . By Theorem 8.12, each diagonal
bisects a pair of \qquad
\qquad

3. Sketch rectangle WXYZ. List everything that you know about it.
4. Suppose the diagonals of the frame in Example 4 are not congruent.
Could the frame still be a rectangle? Explain.

8.5 - Use Properties of Trapezoids and Kites

Trapezoid - A trapezoid is a quadrilateral with exactly one pair of parallel sides.
Bases of a trapezoid - The parallel sides of a trapezoid are the bases.
Base angles of a trapezoid - A trapezoid has 2 pairs of base angles. Each pair shares a base as a side.

Legs of a trapezoid - The nonparallel sides of a trapezoid are the legs.
Isosceles trapezoid - An isosceles trapezoid is a trapezoid in which the legs are congruent.
Midsegment of a trapezoid - The midsegment of a trapezoid is the segment that connects the midpoints of its legs.

Kite - a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is \qquad

If trapezoid $A B C D$ is isosceles, then $\angle A \cong \angle \ldots$ and $\angle \ldots \ldots \angle$.

THEOREM 8.15

If a trapezoid has a pair of congruent
\qquad , then it is an isosceles
trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid $A B C D$ is isosceles.

THEOREM 8.16

A trapezoid is isosceles if and only if its diagonals are \qquad .

Trapezoid $A B C D$ is isosceles if and only if \qquad \cong \qquad -

Example 1 Use a coordinate plane

Show that CDEF is a trapezoid.

Example 2 Use properties of isosceles trapezoids

Kitchen A shelf fitting into a cupboard in the corner of a kitchen is an isosceles trapezoid. Find $m \angle N, m \angle L$, and $m \angle M$.

1. In Example 1, suppose the coordinates of point E are $(7,5)$. What type of quadrilateral is CDEF? Explain.
2. Find $m \angle C, m \angle A$, and $m \angle D$ in the trapezoid shown.

THEOREM 8.17: MIDSEGMENT THEOREM FOR TRAPEZOIDS

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

If $\overline{M N}$ is the midsegment of trapezoid $A B C D$, then
$\overline{M N} \mid$ \qquad ,$\overline{M N} \|_{\ldots}$, and $M N=$ \qquad $+$ \qquad).

Example 3 Use the midsegment of a trapezoid

In the diagram, $\overline{M N}$ is the midsegment of trapezoid $P Q R S$. Find $M N$.

3. Find $M N$ in the trapezoid at the right.

THEOREM 8. 18

If a quadrilateral is a kite, then its diagonals are \qquad .

If quadrilateral $A B C D$ is a kite,
 then \qquad \perp \qquad .

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral $A B C D$ is a kite and $\overline{B C} \cong \overline{B A}$, then $\angle A$ \qquad $\angle C$ and $\angle B$ \qquad $\angle D$.

Example 4 Apply Theorem 8.19

Find $m \angle T$ in the kite shown at the right.

8.6 - Identify Special Quadrilaterals

Example 1 Identify quadrilaterals

Quadrilateral ABCD has both pairs of opposite sides congruent. What types of quadrilaterals meet this condition?

Solution

There are many possibilities.

1. Quadrilateral JKLM has both pairs of opposite angles congruent. What types of quadrilaterals meet this condition?

Example 2 Identify a quadrilateral

What is the most specific name for quadrilateral $A B C D$?

Example 3 Identify a quadrilateral

Is enough information given in the diagram to show that quadrilateral $F G H J$ is an isosceles trapezoid? Explain.

2. What is the most specific name for quadrilateral QRST? Explaín your reasoning.

