## 6.1 - Ratios, Proportions, and the Geometric Mean

Ratio of $a$ to $b-$

Proportion -

Means -

Geometric mean -

## Example 1 Simplify ratios

Simplify the ratio. (See Table of Measures, p. 921)
a. $76 \mathrm{~cm}: 8 \mathrm{~cm}$
b. $\frac{4 \mathrm{ft}}{24 \mathrm{in} \text {. }}$
(. Checkpoint In Exercises 1 and 2, simplify the ratio.

1. 4 meters to 18 meters
2. $33 \mathrm{yd}: 9 \mathrm{ft}$
3. The perimeter of a rectangular table is 21 feet and the ratio of its length to its width is $5: 2$. Find the length and width of the table.

## Example $3 \quad$ Use extended ratios

The measures of the angles in $\triangle B C D$ are in the extended ratio of $2: 3: 4$. Find the measures of the angles.

## Solution

Begin by sketching the triangle. Then use the extended ratio of $2: 3: 4$ to label the measures
as $\qquad$ $x^{\circ}, \ldots x^{\circ}$, and $\qquad$ $x^{\circ}$.


Checkpoint Complete the following exercise.
4. A triangle's angle measures are in the extended ratio of $1: 4: 5$. Find the measures of the angles.

## A PROPERTY OF PROPORTIONS

1. Cross Products Property In a proportion, the product of the extremes equals the product of the means.
If $\frac{a}{b}=\frac{c}{d}$ where $b \neq 0$ and $d \neq 0$, then $\qquad$ $=$ $\qquad$ -


Example 4 Solve proportions
Solve the proportion.
a. $\frac{3}{4}=\frac{x}{16}$
b. $\frac{3}{x+1}=\frac{2}{x}$

## GEOMETRIC MEAN

The geometric mean of two positive numbers $a$ and $b$ is the positive number $x$ that satisfies $\frac{a}{x}=\frac{x}{b}$.
So, $x^{2}=$ $\qquad$ and $x=\sqrt{ }$ $\qquad$ .

## Your Notes

Example 6 Find a geometric mean
Find the geometric mean of 16 and 48.
8. Find the geometric mean of 14 and 16.

## 6.2 - Use Proportions to Solve Geometry Problems

Scale drawing -

Scale -

## ADDITIONAL PROPERTIES OF PROPORTIONS

2. Reciprocal Property If two ratios are equal, then their reciprocals are also equal.

If $\frac{a}{b}=\frac{c}{d}$, then $\frac{b}{a}=$ $\qquad$
3. If you interchange the means of a proportion, then you form another true proportion.

If $\frac{a}{b}=\frac{c}{d}$, then $\frac{a}{c}=\ldots$.
4. In a proportion, if you add the value of each ratio's denominator to its numerator, then you form another true proportion.
If $\frac{a}{b}=\frac{c}{d}$, then $\frac{a+b}{b}=$ $\qquad$

## Example 1 Use properties of proportions

In the diagram, $\frac{A C}{D F}=\frac{B C}{E F}$. Write
four true proportions.

Because $\frac{A C}{D F}=\frac{B C}{E F}$, then $\frac{12}{18}=$ $\qquad$


Reciprocal Property: The reciprocals are equal, so $\frac{18}{12}=$ .

Property 3: You can interchange the means, so $\frac{12}{9}=$ $\qquad$ .

Property 4: You can add the denominators to the numerators, so $=\ldots \quad$.

Example 2 Use proportions with geometric figures
In the diagram, $\frac{J L}{L H}=\frac{J K}{K G}=$ Find $J H$ and $L_{\text {. }}$


1. In Example 1, find the value of $x$.
2. In Example 2, $\frac{K L}{G H}=\frac{J K}{J G}$. Find $G H$.

## Example 4 Use a scale drawing

Maps The scale of the map at the right is 1 inch: 8 miles. Find the actual distance from Westbrook to Cooley.

## Solution

Use a ruler. The distance from Westbrook to Cooley on the map is about $\qquad$
$\qquad$ . Let $x$ be
 the actual distance in miles.

$$
=\frac{1 \mathrm{in} .}{8 \mathrm{mi} \longleftarrow \text { distance on map }}
$$

$\qquad$

$$
\begin{aligned}
& x=-\quad-\quad \begin{array}{l}
\text { Cross Products Property } \\
x={ }_{2}
\end{array} \quad \text { Simplify. }
\end{aligned}
$$

## Example 5 Solve a multi-step problem

Scale Model You buy a 3-D scale model of the Sunsphere in Knoxville, TN. The actual building is 266 feet tall. Your model is 20 inches tall, and the diameter of the dome on your scale model is about 5.6 inches.
a. What is the diameter of the actual dome?
b. How many times as tall as your model is the actual building?
4. Two landmarks are 130 miles from each other. The landmarks are 6.5 inches apart on a map. Find the scale of the map.

## 6.3 - Use Similar Polygons

Similar polygons -
Scale factor of two similar polygons - If two polygons are similar then the ration of the lengths of two corresponding sides is called a scale factor.

## Example 1 Use similarity statements

In the diagram, $\triangle A B C \sim \triangle D E F$.
a. List all pairs of congruent angles.

In a statement of proportionality, any pair of ratios forms a true proportion.
b. Check that the ratios of corresponding side lengths are equal.
c. Write the ratios of the corresponding side
 lengths in a statement of proportionality.

Example 2 Find the scale factor
Determine whether the polygons are similar. If they are, write a similarity statement and find the scale factor of ABCD to JKLM.

## Solution

Step 1 Identify pairs of congruent angles.
From the diagram, you can see that $\angle B \cong \angle$ $\qquad$ -
$\angle C \cong \angle \quad$, and $\angle D \cong \angle$. Angles $\qquad$ and $\qquad$ are right angles, so $\angle$ $\qquad$ $\cong \angle$
So, the corresponding angles are $\qquad$ . $\qquad$ -

Step 2 Show that corresponding side lengths are proportional.

$$
\begin{array}{ll}
\frac{A B}{J K}= & \frac{B C}{K L}= \\
\frac{C D}{L M}= & \frac{A D}{J M}=
\end{array}
$$

The ratios are equal, so the corresponding side lengths are $\qquad$ -

So $A B C D$ ~ $\qquad$ . The scale factor of $A B C D$ to $J K L M$
is

## Example 3 Use similar polygons

In the diagram, $\triangle B C D \sim \triangle R S T$. Find the value of $x$.

## Solution

The triangles are similar, so the corresponding side lengths are
$\qquad$ -


Checkpoint In the diagram, FGHJ $\sim$ LMNP.
2. What is the scale factor of $L / M N P$ to $F G H J$ ?
3. Find the value of $x$.


## THEOREM 6.1: PERIMETERS OF SIMILAR POLYGONS

If two polygons are similar, then the ratio of their perimeters is equal to the ratios of their corresponding side lengths.

If KLMN ~ PQRS, then

$\frac{K L+L M+M N+N K}{P Q+Q R+R S+S P}=$ $\qquad$ $=$ $=$ $\qquad$

## Example $4 \quad$ Find perimeters of similar figures

Basketball A larger cement court is being poured for a basketball hoop in place of a smaller one. The court will be 20 feet wide and 25 feet long. The old court was similar in shape, but only 16 feet wide.
a. Find the scale factor of the new court to the old court.
b. Find the perimeters of the new court and the old court.

## CORRESPONDING LENGTHS IN SIMILAR POLYGONS

If two polygons are similar, then the ratio of any two corresponding lengths in the polygons is equal to the $\qquad$ of the similar polygons.

## Example $5 \quad$ Use a scalle factor

In the diagram, $\triangle F G H \sim \triangle J G K$.
Find the length of the altitude $\overline{G L}$.


## 6.4 - Prove Triangles Similar by AA

POSTULATE 22: ANGLE-ANGLE (AA) SIMILLARITY POSTULATE

If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.


Checkpoint Determine whether the triangles are similar. If they are, write a similarity statement.


## Example 2 Show that triangles are similar

Show that the two triangles are similar.
a. $\triangle R T V$ and $\triangle R Q S$
b. $\triangle L M N$ and $\triangle N O P$


Example 3 Using similar triangles


Height A lifeguard is standing beside the lifeguard chair on a beach. The lifeguard is 6 feet 4 inches tall and casts a shadow that is 48 inches long. The chair casts a shadow that is 6 feet long. How tall is the chair?

## 6.5 - Prove Triangles Similar by SSS and SAS

## THEOREM 6.2: SIDE-SIDE-SIDE (SSS) SIMILARITY THEOREM

If the corresponding side lengths of two triangles are $\qquad$ -,

then the triangles are similar.
If $\frac{A B}{R S}=\frac{B C}{S T}=\frac{C A}{T R}$, then $\triangle A B C \sim \triangle R S T$.


Example 1 Use the SSS Similarity Theorem
Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$ ?


## Example $2 \quad$ Use the SSS Similarity Theorem

Find the value of $x$ that makes $\triangle A B C \sim \triangle D E F$.


Checkpoint Complete the following exercises.

1. Which of the three triangles are similar?

2. Suppose $A B$ is not given in $\triangle A B C$. What length for $A B$ would make $\triangle A B C$ similar to $\triangle Q R P$ ?


## THEOREM 6.3: SIDE-ANGLE-SIDE (SAS) SIMILARITY THEOREM

If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are $\qquad$
$\qquad$ , then the triangles are similar.
If $\angle X \cong \angle M$, and $\frac{Z X}{P M}=\frac{X Y}{M N}$, then $\triangle X Y Z \sim \triangle M N P$.

## Example $3 \quad$ Use the SAS Similarity Theorem

Birdfeeder You are drawing a design for a birdfeeder. Can you construct the top so it is similar to the bottom using the angle measure and lengths shown?


TRIANGLE SIMILARITY POSTULATE AND THEOREMS
AA Similarity Postulate If $\angle A \cong \angle D$ and
$\angle B \cong \angle E$, then $\triangle A B C \sim \triangle D E F$.
SSS Similarity Theorem if $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$, then $\triangle A B C \sim \triangle D E F$.

SAS Similarity Theorem If $\angle A \cong \angle D$ and $\frac{A B}{D E}=\frac{A C}{D F}$, then $\triangle A B C \sim \triangle D E F$.

## Example 4 Choose a method

Tell what method you would use to show that the triangles are similar.

Solution

4. Explain how to show $\triangle J K L \sim \triangle L K M$.


## 6.6 - Use Proportionality Theorems

## THEOREM 6.4: TRIANGLE PROPORTIONALITY THEOREM

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two

sides $\qquad$
$\qquad$ -.

If $\overline{T U} \| \overline{Q S}$, then $\qquad$ .

## THEOREM 6.5: CONVERSE OF THE TRIANGLE PROPORTIONALITY THEOREM

If a line divides two sides of a triangle proportionally, then it is parallel to the $\qquad$ .


If $\frac{R T}{T Q}=\frac{R U}{U S}$, then $\qquad$ II

## Example 1 Find the length of a segment

In the diagram, $\overline{Q S} \| \overline{U T}, R Q=10, R S=12$, and $S T=6$. What is the length of QU?


## Example 2 Solve a real-world problem

Aerodynamics A spoiler for a remote controlled car is shown where $A B=31 \mathrm{~mm}, B C=19 \mathrm{~mm}$, $C D=27 \mathrm{~mm}$, and $D E=23 \mathrm{~mm}$. Explain why $\overline{B D}$ is not parallel to $\overline{A E}$.


1. Find the length of $\overline{K L}$.

2. Determine whether $\overline{Q T} \| \overline{R S}$.


THEOREM 6.6
If three parallel lines intersect two transversals, then they divide the transversals

$\qquad$ -

$$
\frac{U W}{W Y}=
$$

## THEOREM 6.7

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are
to the lengths of
the other two sides.

$\frac{A D}{D B}=$

## Example $3 \quad$ Use Theorem 6.6

Farming A farmer's land is divided by a newly constructed interstate. The distances shown are in meters. Find the distance CA between the north border and the south border of the farmer's land.


## Example 4 Use Theorem 6.7

In the diagram, $\angle D E G \cong \angle G E F$. Use the given side lengths to find the length of $\overline{D G}$.


Checkpoint Find the length of $\overline{\mathrm{AB}}$.
3.


### 6.7 Perform Similarity Transformations

Dilation - a transformation that stretches or shrinks a figure to create a similar figure.
Scale factor - The scale factor (k) is the ratio of a side length of the image to the corresponding side length of the original figure.

Reduction - a dilation where $0<k<1$
Enlargement - a dilation where $\mathrm{k}>1$

## COORDINATE NOTATION FOR A DILATION

You can describe a dilation with respect to the origin with the notation $(x, y) \rightarrow(k x, k y)$, where $k$ is the scale factor.
If $0<k<1$, the dilation is a _ . If $k>1$, the dilation is an $\qquad$

## Example 1 Draw a dilation with a scale factor greater than 1

Draw a dilation of quadrilateral $A B C D$ with vertices $A(2,0), B(6,-4), C(8,2)$, and $D(6,4)$. Use a scale factor of $\frac{1}{2}$.

## Example 2 Verify that a figure is similar to its dillation

A triangle has the vertices $A(2,-1), B(4,-1)$, and $C(4,2)$. The image of $\triangle A B C$ after a dilation with a scale factor of 2 is $\triangle D E F$.
a. Sketch $\triangle A B C$ and $\triangle D E F$.
b. Verify that $\triangle A B C$ and $\triangle D E F$ are similar.

## Checkpoint Complete the following exercises.

1. A triangle has the vertices $B(-1,-1), C(0,1)$, and $D(1,0)$. Find the coordinates of $L, M$, and $N$ so that $\triangle L M N$ is a dilation of $\triangle B C D$ with a scale factor of 4. Sketch $\triangle B C D$ and $\triangle L M N$.
