5.1 - Midsegment Theorem and Coordinate Proof

Midsegment of a triangle -

THEOREM 5.1: MIDSEGMENT THEOREM

The segment connecting the midpoints of two sides of a triangle is \qquad to the third side and is \qquad as long as that side. $\overline{D E} \| \overline{A C}$ and $D E=\frac{1}{2} A C$

Example 1 Use the Midsegment Theorem to find lengths

Windows A large triangular window is segmented as shown. In the diagram,

In the diagram for Example 1, midsegment $\overline{D F}$ can be called "the midsegment opposite $\overline{B C}$." $\overline{D F}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find $D F$ and $A B$.

1. In Example 1, consider $\triangle A D F$. What is the length of the midsegment opposite $\overline{D F}$?

Example 2 Use the Midsegment Theorem

In the diagram at the right, $Q S=S P$ and $P T=T R$. Show that $\overline{Q R} \| \overline{S T}$.

Solution

Because $Q S=S P$ and $P T=T R, S$ is the \qquad of $\overline{Q P}$ and T is the \qquad of $\overline{P R}$ by definition. Then $\overline{S T}$ is a of $\triangle P Q R$ by definition and $\overline{Q R} \| \overline{S T}$ by the \qquad -

Checkpoint Complete the following exercise.
2. In Example 2, if V is the midpoint of $\overline{Q R}$, what do you know about $\overline{S V}$?

5.2 - Use Perpendicular Bisectors

Perpendicular bisector -

Equidistant -
Concurrent -

Point of concurrency -

THEOREM 5.2: PERPENDICULAR BISECTOR THEOREM

In a plane, if a point is on the perpendicular bisector of a segment, then it is \qquad $-$ from the endpoints of the segment.
 If $\overleftrightarrow{C P}$ is the \perp bisector of $\overline{A B}$, then $C A=$ \qquad .

THEOREM 5.3: CONVERSE OF THE PERPENDICULAR BISECTOR THEOREM

In a plane, if a point is equidistant from the endpoints of a segment, then it is on the \qquad
\qquad of the segment.

If $D A=D B$, then D lies on the \qquad of $\overline{A B}$.

Example 1 Use the Perpendicular Bisector Theorem
$\overleftrightarrow{A C}$ is the perpendicular bisector of $\overline{B D}$. Find $A D$.

Solution

$A D=$ \qquad Perpendicular Bisector Theorem
\qquad $=$ \qquad
\qquad Substitute. $x=\quad$ Solve for x.
$A D=$ \qquad $=$ \qquad = \qquad -.

Example 2 Use perpendicular bisectors

In the diagram, $\overleftrightarrow{K N}$ is the perpendicular bisector of $\overline{\mathrm{JL}}$.
a. What segment lengths in the diagram are equal?
b. Is M on $\overleftrightarrow{K N}$?

Checkpoint In the diagram, $\overleftrightarrow{J K}$ is the perpendicular bisector of $\overline{G H}$.

1. What segment lengths are equal?

THEOREM 5.4: CONCURRENCY OF PERPENDICULAR BISECTORS OF A TRIANGLE

The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.

If $\overline{P D}, \overline{P E}$, and $\overline{P F}$ are perpendicular
 bisectors, then $P A=$ \qquad = \qquad .

Example 3 Use the concurrency of perpendicular bisectors
Football Three friends are playing catch. You want to join and position yourself so that you are the same distance from your friends. Find a location for you to stand.

Solution

Theorem 5.4 shows you that you can find a point equidistant from three points by using the
by those points.
Copy the positions of points A, B, and C and connect those points to draw $\triangle A B C$. Then use a ruler and a protractor to draw the three of $\triangle A B C$. The point of concurrency D is a
 location for you to stand.

5.3 - Use Angle Bisectors of Triangles

Incenter -

THEOREM 5.5: ANGLE BISECTOR THEOREM

If a point is on the bisector of an angle, then it is equidistant from the two \qquad of the angle.

In Geometry, distance means the shortest length between two objects.

If $\overrightarrow{A D}$ bisects $\angle B A C$ and $\overrightarrow{D B} \perp \overrightarrow{A B}$ and $\overline{D C} \perp \overrightarrow{A C}$, then $D B=$ \qquad .

THEOREM 5.6: CONVERSE OF THE ANGLE BISECTOR THEOREM

If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the \qquad of the angle.

If $\overline{D B} \perp \overrightarrow{A B}$ and $\overline{D C} \perp \overrightarrow{A C}$ and $D B=D C$, then $\overrightarrow{A D}$ \qquad $\angle B A C$.

Example 1 Use the Angle Bisector Theorems

Find the measure of $\angle C B E$.

Example 2 Solve a real-world problem

Web A spider's position on its web relative to an approaching fly and the opposite sides of the web forms congruent angles, as shown. Will the spider have to move farther to reach a fly toward the right edge or the left edge?

Example $3 \quad$ Use algebra to solve a problem

For what value of x does \mathbb{P} lie on the bisector of $\angle J$?

THEOREM 5.7: CONCURRENCY OF ANGLE BISECTORS OF A TRIANGLE

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.
If $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are angle bisectors of $\triangle A B C$, then
 $P D=$ \qquad $=$ \qquad -.

Example 4 Use the concurrency of angle bisectors

In the diagram, L is the incenter of $\triangle F H J$. Find $L K$.

By the Concurrency of Angle Bisectors of a Triangle Theorem, the incenter L is \qquad from the sides of $\triangle \overline{F H}$. So, to find $L K$, you can find \qquad in $\triangle L H I$. Use the Pythagorean Theorem.
\qquad $=$ \qquad Pythagorean Theorem
\qquad = \qquad
\qquad $=$ \qquad
\qquad
\qquad

Substitute known values.
Simplify.
Take the positive square root of each side.

Because \qquad $=L K, L K=$ \qquad

5.4 - Use Medians and Altitudes

VOCABULARY

Median of a triangle The median of a triangle is a segment from a vertex to the midpoint of the opposite side.

Centroid The point of concurrency of the three medians of a triangle is the centroid.

Altitude of a triangle An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

Orthocenter The point at which the lines containing the three altitudes of a triangle intersect is called the orthocenter of the triangle.

THEOREM 5.8: CONCURRENCY OF MEDIANS OF A TRIANGLE

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.
 The medians of $\triangle A B C$ meet at P and $A P=\frac{2}{3}$ \qquad $B P=\frac{2}{3}$ \qquad , and $C P=\frac{2}{3}$ \qquad -

Example 1 Use the centroid of a triangle

In $\triangle F G H, M$ is the centroid and $G M=6$. Find ML and GL.
\qquad $=$ \qquad GL Concurrency of Medians of a Triangle Theorem

\qquad $=\quad$ GL Substitute \qquad for GM.
$=G L \quad$ Multiply each side by the reciprocal, \qquad "

Then $M L=G L-$ \qquad $=$ \qquad - \qquad $=$ \qquad .

So, ML = \qquad and $G L=$ \qquad -

Checkpoint Complete the following exercise.

1. In Example 1, suppose $F M=10$. Find $M K$ and $F K$.

Example $2 \quad$ Find the centroid of a triangle

The vertices of $\triangle J K L$ are $J(1,2), K(4,6)$, and $L(7,4)$. Find the coordinates of the centroid \mathbb{P} of $\triangle J K L$.
Sketch $\triangle J K L$. Then use the Midpoint Formula to find the midpoint M of $\overline{J L}$ and sketch median $\overline{K M}$.

THEOREM 5.9: CONCURRENCY OF ALTITUDES OF A TRIANGLE

The lines containing the altitudes of a triangle are \qquad -.
The lines containing $\overline{A F}, \overline{B E}$, and $\overline{C D}$ meet at G.

Example 3 Find the orthocenter

Find the orthocenter P in the triangle.

b.

5.5 - Use Inequalities in a Triangle

Example 1 Relate side length and anglle measure

Mark the largest angle, longest side, smallest angle, and shortest side of the
 triangle shown at the right. What do you notice?

Solution

The longest side and largest angle are \qquad each other.

The shortest side and smallest angle are \qquad each other.

THEOREM 5.10

If one side of a triangle is longer than another side, then the angle opposite the longer side is \qquad
 than the angle opposite the shorter side.
$A B>B C$, so
$m \angle$ \qquad $>m \angle$ \qquad -

THEOREM 5. 11

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is
 than the side opposite the smaller angle.
$m \angle A>m \angle C$,
so \qquad $>$ \qquad -

Example 2 Find angle measures

Boating A long-tailed boat leaves a dock and travels 2500 feet to a cave, 5000 feet to a beach, then 6000 feet back to the dock as shown below. One of the angles in the path is about 55° and one is about 24°. What is the angle measure of the path made at the cave?

Checkpoint Complete the following exercises.

1. List the sides of $\triangle P Q R$ in order from shortest to longest.

2. Another boat makes a trip whose path has sides of 1.5 miles, 2 miles, and 2.5 miles long and angles of 90°, about 53°, and about 37°.
Sketch and label a diagram with the shortest side on the bottom and the right angle at the right.

THEOREM 5.12: TRIANGLE INEQUALITY THEOREM

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

\qquad $+$ \qquad $>A C$
$A C+$ \qquad $>$ \qquad
\qquad $+A C>$ \qquad

Example 3 Find possible side lengths

A triangle has one side of length 14 and another of length 10. Describe the possible lengths of the third side.

Solution

Let x represent the length of the third side. Draw diagrams to help visualize the small and large values of x. Then use the Triangle Inequality Theorem to write and solve inequalities.

5.6 -Inequalities in Two Triangles and Indirect Proof

THEOREM 5.13: HINGE THEOREM

If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first is \qquad than the
 third side of the second.

THEOREM 5.14: CONVERSE OF THE HINGE THEOREM

If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second, then the included angle of the first is \qquad than the included angle of the second.

Example 1 Use the Converse of the Hinge Theorem

Given that $\overline{A D} \cong \overline{B C}$, how does $\angle 1$ compare to $\angle 2$?

Example 2 Solve a multi-step problem

Travel Car A leaves a mall, heads due north for 5 mi and then turns due west for 3 mi . Car B leaves the same mall, heads due south for 5 mi and then turns 80° toward east for 3 mi . Which car is farther from the mall?

