5.1 – Midsegment Theorem and Coordinate Proof

Midsegment of a triangle -

Solution

Because QS = SP and PT = TR, S is the ______ of \overline{QP} and T is the _____ by definition. Then \overline{ST} is a _____ definition and $\overline{QR} \parallel \overline{ST}$ by the _____

Checkpoint Complete the following exercise.

2. In Example 2, if V is the midpoint of \overline{QR} , what do you know about \overline{SV} ?

5.2 – Use Perpendicular Bisectors

Perpendicular bisector -

Equidistant -

Concurrent -

Point of concurrency –

Checkpoint In the diagram, \overrightarrow{JK} is the perpendicular bisector of \overrightarrow{GH} .

THEOREM 5.4: CONCURRENCY OF PERPENDICULAR BISECTORS OF A TRIANGLE

The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.

If \overline{PD} , \overline{PE} , and \overline{PF} are perpendicular bisectors, then $PA = ___ = ___$.

Example 3 Use the concurrency of perpendicular bisectors

Football Three friends are playing catch. You want to join and position yourself so that you are the same distance from your friends. Find a location for you to stand.

Solution

Theorem 5.4 shows you that you can find a point equidistant from three points by using the

by those points.

Copy the positions of points A, B, and Cand connect those points to draw $\triangle ABC$. Then use a ruler and a protractor to draw the three _______ of

 $\triangle ABC$. The point of concurrency *D* is a location for you to stand.

5.3 – Use Angle Bisectors of Triangles

Incenter –

5.4 – Use Medians and Altitudes

VOCABULARY Median of a triangle The median of a triangle is a segment from a vertex to the midpoint of the opposite side. Centroid The point of concurrency of the three medians of a triangle is the centroid. Altitude of a triangle An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side. Orthocenter The point at which the lines containing the three altitudes of a triangle intersect is called the orthocenter of the triangle. THEOREM 5.8: CONCURRENCY OF MEDIANS OF A

TRIANGLE The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the

The medians of $\triangle ABC$ meet at *P* and $AP = \frac{2}{3}$

 $BP = \frac{2}{3}$, and $CP = \frac{2}{3}$.

midpoint of the opposite side.

Checkpoint Complete the following exercise.

1. In Example 1, suppose FM = 10. Find *MK* and *FK*.

Example 2 Find the centroid of a triangle

The vertices of $\triangle JKL$ are J(1, 2), K(4, 6), and L(7, 4). Find the coordinates of the centroid P of $\triangle JKL$.

Sketch $\triangle JKL$. Then use the Midpoint Formula to find the midpoint *M* of \overline{JL} and sketch median \overline{KM} .

5.5 – Use Inequalities in a Triangle

Be careful not to confuse the symbol ∠ meaning angle with the symbol < meaning is less than. Notice that the bottom edge of the angle symbol is horizontal.

Example 2 Find angle measures

Boating A long-tailed boat leaves a dock and travels 2500 feet to a cave, 5000 feet to a beach, then 6000 feet back to the dock as shown below. One of the angles in the path is about 55° and one is about 24°. What is the angle measure of the path made at the cave?

Solution

Let *x* represent the length of the third side. Draw diagrams to help visualize the small and large values of *x*. Then use the Triangle Inequality Theorem to write and solve inequalities.

5.6 –Inequalities in Two Triangles and Indirect Proof

Given that $\overline{AD} \cong \overline{BC}$, how does $\angle 1$ compare to $\angle 2$?

Travel Car A leaves a mall, heads due north for 5 mi and then turns due west for 3 mi. Car B leaves the same mall, heads due south for 5 mi and then turns 80° toward east for 3 mi. Which car is farther from the mall?