4. 1 - Apply Triangle Sum Properties

Triangle -

Interior angles -

Exterior angles -

Corollary to a theorem -

Example 1 Classify triangles by sides and by angles
Shuffleboard Classify the triangular shape of the shuffleboard scoring area in the diagram by its sides and by measuring its angles.

THEOREM 4.1: TRIANGLE SUM THEOREM

The sum of the measures of the interior angles of a triangle is \qquad .
 $m \angle A+m \angle B+m \angle C=$ \qquad
THEOREM 4.2: EXTERIOR ANGLE THEOREM
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two

angles.

$$
m \angle 1=m \angle \ldots+m \angle
$$

Example 3 Find angle measure

Use the diagram at the right

COROLLARY TO THE TRIANGLE SUM THEOREM

The acute angles of a right triangle are \qquad -

$$
m \angle A+m \angle B=
$$

\qquad
2. Triangle $J K L$ has vertices $J(-2,-1), K(1,3)$, and $L(5,0)$. Classify it by its sides. Then determine if it is a right triangle.
3. Find the measure of $\angle 1$ in the diagram shown.

4.2 - Apply Congruence and Triangles

Congruent figures -

Example 2 Use properties of congruent figures

In the diagram, $\mathbf{Q R S T} \cong W X Y Z$.
a. Find the value of x.

b. Find the value of y.

1. Identify all pairs of congruent corresponding parts.

Corresponding angles:
Corresponding sides.
2. Find the value of x and find $m \angle G$.

THEOREM 4.3: THIRD ANGLES THEOREM

If two angles of one triangle are congruent to two angles of another
 triangle, then the third angles are also \qquad -.

Example 4 Use the Third Angles Theorem

Find $m \angle V$.

$\angle \mathrm{SUT} \cong \angle \mathrm{VUW}$ by the \qquad
\qquad -
The diagram shows that $\angle S T U \cong$ \qquad , so by the
Third Angles Theorem, $\angle S \cong$ \qquad . By the Triangle Sum
Theorem, $m \angle S=$ \qquad = \qquad . So, $m \angle S$
$=m \angle V=$ \qquad by the definition of congruent angles.

THEOREM 4.4: PROPERTIES OF CONGRUENT TRIANGLES

Reflexive Property of Congruent Triangles
For any triangle $A B C, \triangle A B C \cong$ \qquad .

Symmetric Property of Congruent Triangles
If $\triangle A B C \cong \triangle D E F$, then \qquad
\qquad

Transitive Property of Congruent Triangles
If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle J K L$, then

\qquad -

4.3 - Prove Triangles Congruent by SSS

POSTULATE 19: SIDE-SIDE-SIDE (SSS) CONGRUENCE POSTULATE

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.
If Side $\overline{A B} \cong$ \qquad ,
Side $\overline{B C} \cong$ \qquad , and
Side $\overline{C A} \cong$ \qquad _,

then
$\triangle A B C \cong$ \qquad -

Example 1 Use the SSS Congruence Postulate

Write a proof.
Given $\overline{F J} \cong \overline{H J}$,
G is the midpoint of $\overline{F H}$.
Prove $\triangle F G J \cong \triangle H G J$

Proof It is given that $\overline{F J} \cong$ \qquad . Point G is the midpoint of $\overline{F H}$, so \qquad . By the Reflexive Property,
. So, by the \qquad ,
$\triangle F G J \cong \triangle H G J$.

1. $\triangle J K L \cong \triangle M K L$

2. $\triangle R S T \cong \triangle T V W$

Example 2 Congruence in the coordinate plane

Determine whether $\triangle P Q R$ is congruent to the other triangles shown at the right.

4.4 - Prove Triangles Congruent by SAS and HL

Hypotenuse -

Leg of a right triangle -

POSTULATE 20: SIDE-ANGLE-SIDE (SAS)

 CONGRUENCE POSTULATEIf two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.
If Side $\overline{R S} \cong$ \qquad ,

Angle $\angle R \cong$ \qquad , and
Side $\overline{R T} \cong$ \qquad ,

then $\quad \triangle R S T \cong$ \qquad -
$\triangle R S T \approx-\quad$ - \qquad

Example 2 Use SAS and properties of shapes

In the diagram, $A B C D$ is a rectangle. What can you conclude about $\triangle A B C$ and $\triangle C D A$?

Solution

By the Right Angles Congruence Theorem, $\angle B \cong \angle D$. Opposite sides of a rectangle are congruent, so \qquad and \qquad .
$\triangle A B C$ and $\triangle C D A$ are congruent by the \qquad
(.) Checkpoint In the diagram, $\overline{A B}, \overline{C D}$, and $\overline{E F}$ pass through the center M of the circle. Also, $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$.

1. Prove that $\triangle D M Y \cong \triangle B M Y$.

THEOREM 4.5: HYPOTENUSE-LEG CONGRUENCE THEOREM

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second triangle, then the two triangles are \qquad .

Example 3 Use the Hypotenuse-Leg Theorem

Write a proof.
Given $\quad \overline{A C} \cong \overline{E C}$,
$\overline{A B} \perp \overline{B D}$,
$\overline{E D} \perp \overline{B D}$,
$\overline{A C}$ is a bisector of $\overline{B D}$.
Prove $\triangle A B C \cong \triangle E D C$

	Statements	Reasons
	1. $\overline{A C} \cong \overline{E C}$	1.
2. $\overline{A B} \perp \overline{B D}$,	2.	

3. $\angle B$ and $\angle D$ are
\qquad .
4. $\triangle A B C$ and $\triangle E D C$ are
\qquad
5. $\overline{A C}$ is a bisector of $\overline{B D}$.

L
6. $\overline{B C} \cong \overline{D C}$
7. $\triangle A B C \cong \triangle E D C$
3. Definition of \perp lines
4. Definition of a \qquad
5. \qquad
6. Definition of segment bisector
7. \qquad

4.5 - Prove Triangles Congruent by ASA

POSTULATE 21: ANGLE-SIDE-ANGLE (ASA) CONGRUENCE POSTULATE

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If Angle $\angle A \cong$ \qquad ,

Side $\overline{A C} \cong$ \qquad , and
Angle $\angle C \cong$ \qquad ,

then $\triangle A B C \cong$ \qquad .

THEOREM 4.6: ANGLE-ANGLE-SIDE (AAS) CONGRUENCE THEOREM

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If Angle $\angle A \cong$ \qquad ,
Angle $\angle C \cong$ \qquad , and
Side $\overline{B C} \cong$ \qquad ,

then

$$
\triangle A B C \cong
$$

\qquad .

Example 1 Identify congruent triangles

Can the triangles be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.
a.

b.

c.

(V) checkpoint Can $\triangle S T W$ and $\triangle V W T$ be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.

2.

4.6 - Use Congruent Triangles

Example 1
 Use congruent triangles

Explain how you can use the given information to prove that the triangles are congruent.
Given $\angle 1 \cong \angle 2, \overline{A B} \cong \overline{D E}$
Prove $\overline{D C} \cong \overline{A C}$
Solution

If you can show that \qquad , you will know that $\overline{D C} \cong \overline{A C}$. First, copy the diagram and mark the given information. Then add the information that you can deduce. In this case, $\angle A B C$ and $\angle D E C$ are \qquad \cong \qquad to congruent angles, so
\angle \qquad $\cong \angle$ \qquad . Also, $\angle A C B \cong$ \qquad -.

Mark given information. Add deduced information.

Two angle pairs and a \qquad side are congruent, so by the \qquad Congruence Theorem , $\triangle A B C \cong \triangle D E C$. Because \qquad
congruent triangles are congruent, $\overline{D C} \cong A \bar{C}$.

1. Explain how you can prove that $\overline{P R} \cong \overline{Q S}$.

Checkpoint Use the given information to write a plan for proof.
3. Given $\overline{G H} \cong \overline{K J}, \overline{F G} \cong \overline{L K}$, $\angle F J G$ and $\angle L H K$ are rt. $\angle s$.
Prove $\triangle F J K \cong \triangle L H G$

4.7 - Use Isosceles and Equilateral Triangles

Legs -

Vertex angle -
Base -

Base angles -

THEOREM 4.7: BASE ANGLES THEOREM

If two sides of a triangle are congruent, then the angles opposite them are congruent. If $\overline{A B} \cong \overline{A C}$, then $\angle B \cong$ \qquad .

THEOREM 4.8: CONVERSE OF BASE ANGLES THEOREM

If two angles of a triangle are congruent, then the sides opposite them are congruent. If $\angle B \cong \angle C$, then $\overline{A B} \cong$ \qquad .

Example 1 Apply the Base Angles Theorem

In $\triangle F G H, \overline{F H} \cong \overline{G H}$. Name two congruent angles.
Solution
$\overline{F H} \cong \overline{\mathrm{GH}}$, so by the Base Angles Theorem,

COROLLARY TO THE BASE ANGLES THEOREM

The corollaries state that a triangle is equilateral if and only if it is equiangular.

If a triangle is equilateral, then it is \qquad .

COROLLARY TO THE CONVERSE OF BASE ANGLES THEOREM

If a triangle is equiangular, then it is \qquad .

Example 2 Find measures in a triangle

Find the measures of $\angle R, \angle S$, and $\angle T$.

Solution

The diagram shows that $\triangle R S T$ is . Therefore, by the Corollary to the Base Angles Theorem, $\triangle R S T$ is

\qquad . So, $m \angle R=m \angle S=m \angle T$.

$$
\begin{aligned}
3(m \angle R) & = & \text { Triangle Sum Theorem } \\
m \angle R & = & \text { Divide each side by } 3 .
\end{aligned}
$$

The measures of $\angle R, \angle \mathrm{~S}$, and $\angle T$ are all

Example 3 Use isosceles and equilateral triangles
Find the values of x and y in the diagram.

Solution

Step 1 Find the value of x. Because
$\triangle J K L$ is \qquad , it is also \qquad and
 to refer to $\angle L J M$ because three angles have J as their vertex.
\qquad .

Step 2 Find the value of y. Because $\angle J M L \cong$ \qquad ,
$\overline{L M} \cong$ \qquad , and $\triangle L M J$ is isosceles. You know that $L J=$ \qquad .
$L M=$ \qquad Definition of congruent segments
$2 y=$ \qquad Substitute $2 y$ for $L M$ and \qquad for LJ.
$y=\quad \quad$ Divide each side by 2.

4.8 - Use Isosceles and Equilateral Triangles

Transformation - an operation that moves or changes a geometric figure in some way to produce a new figure

Image - the new figure produced by a transformation is the image

Translation - moves every point of a figure the same distance in the same direction

Reflection - uses a line of reflection to create a mirror image of the original figure

Example 1 Identify transformations

Name the type of transformation demonstrated in each picture.
a.

b.

c.

Your Notes

COORDINATE NOTATION FOR A TRANSLATION

You can describe a translation by the notation
$(x, y) \rightarrow(x+a, y+b)$
which shows that each point (x, y) of the unshaded figure is translated horizontally a units and vertically b units.

Example 2 Translate a figure in the coordinate plane

Figure $A B C D$ has the vertices $A(1,2), B(3,3), C(4,-1)$, and $D(1,-2)$. Sketch $A B C D$ and its image after the translation $(x, y) \rightarrow(x-4, y+2)$.

Your Notes

Example 3 Reflect a figure in the x-axis

Shapes You are cutting figures out of paper. Use a reflection in the x-axis to draw the other half of the figure.

