# 4. 1 – Apply Triangle Sum Properties

Triangle -

Interior angles -

Exterior angles -

Corollary to a theorem -



# **Example 1** Classify triangles by sides and by angles

Shuffleboard Classify the triangular shape of the shuffleboard scoring area in the diagram by its sides and by measuring its angles.



## **THEOREM 4.1: TRIANGLE SUM THEOREM**

The sum of the measures of the interior angles of a triangle

is .



$$m\angle A + m\angle B + m\angle C =$$

### **THEOREM 4.2: EXTERIOR ANGLE THEOREM**

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two

$$m\angle 1 = m\angle \underline{\hspace{1cm}} + m\angle \underline{\hspace{1cm}}$$

angles.

**Example 3** Find angle measure

Use the diagram at the right to find the measure of  $\angle DCB$ .



## **COROLLARY TO THE TRIANGLE SUM THEOREM**

The acute angles of a right triangle



$$m\angle A + m\angle B =$$

- 2. Triangle JKL has vertices J(-2, -1), K(1, 3), and L(5, 0). Classify it by its sides. Then determine if it is a right triangle.
- 3. Find the measure of  $\angle 1$ in the diagram shown.



# 4.2 - Apply Congruence and Triangles

# Congruent figures -

To help you identify corresponding parts, turn  $\triangle FGH$ .



**Example 1** Identify congruent parts

Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.



Solution

The diagram indicates that  $\triangle ABC \cong \triangle$ \_\_\_\_\_.

Corresponding angles  $\angle A \cong \_\_\_$ ,  $\angle B \cong \_\_\_$ ,  $\angle C \cong \_\_\_$ 

Corresponding sides  $\overline{AB} \cong \underline{\hspace{1cm}}, \overline{BC} \cong \underline{\hspace{1cm}}, \overline{CA} \cong \underline{\hspace{1cm}}$ 

Example 2 Use properties of congruent figures

In the diagram,  $QRST \cong WXYZ$ .

- a. Find the value of x.
- b. Find the value of y.





1. Identify all pairs of congruent corresponding parts.



Corresponding angles:

Corresponding sides.

**2.** Find the value of x and find  $m \angle G$ .

#### **THEOREM 4.3: THIRD ANGLES THEOREM**

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also





| Example 4 Use the Third Angles Theorem                                                       |
|----------------------------------------------------------------------------------------------|
| Find $m \angle V$ .                                                                          |
| 44° U                                                                                        |
| 7 66°                                                                                        |
| $\angle SUT \cong \angle VUW$ by the                                                         |
| The diagram shows that $\angle STU \cong$ , so by the                                        |
| Third Angles Theorem, $\angle S \cong $ By the Triangle Sum                                  |
| Theorem, $m\angle S = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ . So, $m\angle S$ |
| $= m \angle V =$ by the definition of congruent angles.                                      |
|                                                                                              |

| THEOREM 4.4: PROPERTIES OF CONGRETION TRIANGLES                                       | UENT                  |
|---------------------------------------------------------------------------------------|-----------------------|
| Reflexive Property of Congruent Triangles                                             | В                     |
| For any triangle ABC, $\triangle$ ABC $\cong$                                         | $A \longrightarrow C$ |
| Symmetric Property of Congruent Triangles                                             | E                     |
| If $\triangle ABC \cong \triangle DEF$ , then                                         | $D = \sum_{p} F$      |
| Transitive Property of Congruent Triangles                                            | K                     |
| If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$ , then |                       |
|                                                                                       |                       |

# 4.3 - Prove Triangles Congruent by SSS

# POSTULATE 19: SIDE-SIDE (SSS) CONGRUENCE POSTULATE

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.  $B_{\sim}$ 

If Side 
$$\overline{AB} \cong \underline{\hspace{1cm}}$$
,

Side 
$$\overline{BC} \cong \underline{\hspace{1cm}}$$
, and

Side 
$$\overline{CA} \cong$$

then 
$$\triangle ABC \cong$$



# **Example 1** Use the SSS Congruence Postulate

Write a proof.

Given 
$$\overline{FJ} \cong \overline{HJ}$$
,

G is the midpoint of 
$$\overline{FH}$$
.

Prove 
$$\triangle FGJ \cong \triangle HGJ$$

**Proof** It is given that 
$$\overline{FJ} \cong \underline{\hspace{1cm}}$$
. Point G is the midpoint

$$\triangle$$
FGJ  $\cong \triangle$ HGJ.

$$J = \begin{cases} 9 & 1 \\ 8 & 1 \end{cases} M$$

**2.** 
$$\triangle RST \cong \triangle TVW$$



# **Example 2** Congruence in the coordinate plane

Determine whether  $\triangle PQR$  is congruent to the other triangles shown at the right.



# 4.4 - Prove Triangles Congruent by SAS and HL

Hypotenuse -

Leg of a right triangle -

# POSTULATE 20: SIDE-ANGLE-SIDE (SAS) CONGRUENCE POSTULATE

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If Side  $\overline{RS}\cong$ \_\_\_\_\_,

Angle  $\angle R \cong \underline{\hspace{1cm}}$ , and

Side  $\overline{RT} \cong \underline{\phantom{a}}$ ,

then  $\triangle RST \cong \_$  \_ \_



**Example 2** Use SAS and properties of shapes

In the diagram, ABCD is a rectangle. What can you conclude about  $\triangle$ ABC and  $\triangle$ CDA?



Solution

By the Right Angles Congruence Theorem,

 $\angle B \cong \angle D$ . Opposite sides of a rectangle are congruent, so and .

 $\triangle$ ABC and  $\triangle$ CDA are congruent by the \_

Checkpoint In the diagram,  $\overline{AB}$ ,  $\overline{CD}$ , and  $\overline{EF}$  pass through the center M of the circle. Also,  $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$ .



**1.** Prove that  $\triangle DMY \cong \triangle BMY$ .

## **THEOREM 4.5: HYPOTENUSE-LEG CONGRUENCE** THEOREM

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second triangle, then the two triangles are \_\_\_\_\_.





| Example 3 | Use th  | ne Hypotenuse-L   | Leg Theorem |
|-----------|---------|-------------------|-------------|
| Example 9 | OSC III | ie rrypoteriuse-i | eg meoren   |

Write a proof.

Given

 $\overline{AC} \cong \overline{EC}$ ,

 $\overline{AB} \perp \overline{BD}$ ,

 $\overline{ED} \perp \overline{BD}$ ,

 $\overline{AC}$  is a bisector of  $\overline{BD}$ .

Prove

$$\triangle ABC \cong \triangle EDC$$



- **Statements H** 1.  $\overline{AC} \cong \overline{EC}$ 
  - 2.  $\overline{AB} \perp \overline{BD}$ ,
    - $\overline{ED} \perp \overline{BD}$
  - 3.  $\angle B$  and  $\angle D$  are
  - 4.  $\triangle$ ABC and  $\triangle$ EDC are
  - 5. AC is a bisector of BD.
- 6.  $\overline{BC} \cong \overline{DC}$ 
  - 7.  $\triangle ABC \cong \triangle EDC$

- 3. Definition of  $\perp$  lines
- 4. Definition of a
- 6. Definition of segment bisector

# 4.5 - Prove Triangles Congruent by ASA

# POSTULATE 21: ANGLE-SIDE-ANGLE (ASA) CONGRUENCE POSTULATE

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If Angle  $\angle A \cong \underline{\hspace{1cm}}$ ,

Side  $\overline{AC} \cong \underline{\hspace{1cm}}$ , and

Angle  $\angle C \cong \underline{\hspace{1cm}}$ ,

then  $\triangle ABC \cong$  .





# THEOREM 4.6: ANGLE-ANGLE-SIDE (AAS) CONGRUENCE THEOREM

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If Angle  $\angle A \cong \underline{\hspace{1cm}}$ ,

Angle  $\angle C \cong$ , and

Side  $\overline{BC} \cong \underline{\hspace{1cm}}$ ,

A B



then  $\triangle ABC \cong$ 

# **Example 1** Identify congruent triangles

Can the triangles be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.

a.



b.



~



**Checkpoint** Can  $\triangle$ STW and  $\triangle$ VWT be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.



# 4.6 - Use Congruent Triangles

Example 1 Use congruent triangles

Explain how you can use the given information to prove that the triangles are congruent.

Given  $\angle 1 \cong \angle 2$ ,  $\overline{AB} \cong \overline{DE}$ 

Prove  $\overline{DC} \cong \overline{AC}$ 



If you can show that , you will know that  $\overline{DC} \cong \overline{AC}$ . First, copy the diagram and mark the given information. Then add the information that you can deduce. In this case,  $\angle ABC$  and  $\angle DEC$ \_\_\_\_\_ to congruent angles, so

 $\angle$  . Also,  $\angle$  ACB  $\cong$  \_\_\_\_.

Mark given information.

Add deduced information.





Two angle pairs and a congruent, so by the Congruence Theorem,

 $\triangle ABC \cong \triangle DEC$ . Because

congruent triangles are congruent,  $\overline{DC} \cong \overline{AC}$ .

1. Explain how you can prove that  $\overline{PR} \cong \overline{QS}$ .



Checkpoint Use the given information to write a plan for proof.

3. Given  $\overline{GH} \cong \overline{KJ}, \overline{FG} \cong \overline{LK},$ ∠FJG and ∠LHK are rt. \( \delta \).

Prove  $\triangle FJK \cong \triangle LHG$ 



4.7 – Use Isosceles and Equilateral Triangles

Legs -

Vertex angle -

Base -

Base angles -

## **THEOREM 4.7: BASE ANGLES THEOREM**

If two sides of a triangle are congruent, then the angles opposite them are congruent.





# THEOREM 4.8: CONVERSE OF BASE ANGLES THEOREM

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If 
$$\angle B \cong \angle C$$
, then  $\overline{AB} \cong$ 



# **Example 1** Apply the Base Angles Theorem

In  $\triangle FGH$ ,  $\overline{FH} \cong \overline{GH}$ . Name two congruent angles.

Solution

 $\overline{\mathit{FH}} \cong \overline{\mathit{GH}}$ , so by the Base Angles Theorem,



The corollaries state that a triangle is equilateral if and only if it is equiangular.

#### **COROLLARY TO THE BASE ANGLES THEOREM**

If a triangle is equilateral, then it is

### **COROLLARY TO THE CONVERSE** OF BASE ANGLES THEOREM

If a triangle is equiangular, then it is .



3 m

3 m

## Example 2 Find measures in a triangle

Find the measures of  $\angle R$ ,  $\angle S$ , and  $\angle T$ .

#### Solution

The diagram shows that  $\triangle RST$  is . Therefore, by the Corollary

to the Base Angles Theorem,  $\triangle RST$  is

So,  $m \angle R = m \angle S = m \angle T$ .

 $3(m\angle R) =$ 

**Triangle Sum Theorem** 

*m*∠*R* =

Divide each side by 3.

The measures of  $\angle R$ ,  $\angle S$ , and  $\angle T$  are all .

# **Example 3** Use isosceles and equilateral triangles

Find the values of x and y in the diagram.

#### Solution

Step 1 Find the value of x. Because

 $\triangle$  JKL is \_\_\_\_\_, it is also \_\_\_\_\_ and

 $\overline{\mathit{KL}} \cong$  . Therefore, x = 0.

You cannot use  $\angle J$ to refer to  $\angle LJM$ because three angles have J as their vertex.



 $\overline{LM}\cong$  \_\_\_\_\_, and  $\triangle LMJ$  is isosceles. You know

that LJ = 0.

LM =**Definition of congruent segments** 

2y = Substitute 2y for LM and for LJ.

y =

Divide each side by 2.

# 4.8 – Use Isosceles and Equilateral Triangles

**Transformation** – an operation that moves or changes a geometric figure in some way to produce a new figure

**Image** – the new figure produced by a transformation is the image

**Translation** – moves every point of a figure the same distance in the same direction

**Reflection** – uses a line of reflection to create a mirror image of the original figure



#### **Your Notes**

### **COORDINATE NOTATION FOR A TRANSLATION**

You can describe a translation by the notation

$$(x, y) \rightarrow (x + a, y + b)$$

which shows that each point (x, y) of the unshaded figure is translated horizontally a units and vertically b units.



## Example 2 Translate a figure in the coordinate plane

Figure ABCD has the vertices A(1, 2), B(3, 3), C(4, -1), and D(1, -2). Sketch ABCD and its image after the translation  $(x, y) \rightarrow (x - 4, y + 2)$ .

#### **Your Notes**

### Example 3 Reflect a figure in the x-axis

Shapes You are cutting figures out of paper. Use a reflection in the x-axis to draw the other half of the figure.

