3.1 - Lines and Angles

Parallel lines -
Skew lines -

Parallel planes -
Transversal -

POSTULATE 13 PARALLEL POSTULATE

If there is a line and a point not on the line, then there is \qquad line through the point parallel to the
 given line.

There is exactly one line through P parallel to ℓ.

POSTULATE 14 PERPENDICULAR POSTULATE

If there is a line and a point not on the line, then there is \qquad line through the point perpendicular to the given line.

There is exactly one line through P perpendicular to ℓ.

Example 1 Identify relationships in space

Think of each segment in the figure as part of a line. Which line(s) or plane(s) in the figure appear to fit the description?
a. Line(s) parallel to $\overleftrightarrow{A F}$ and
 containing point E
b. Line(s) skew to $\overleftrightarrow{A F}$ and containing point E
c. Line(s) perpendicular to $\overleftrightarrow{A F}$ and containing point E
d. Plane(s) parallel to plane $F G H$ and containing point E

1. parallel to $\overleftrightarrow{P Q}$ and contains S
2. perpendicular to $\overleftrightarrow{P Q}$ and contains S
3. skew to $\overleftrightarrow{P Q}$ and contains S

4. Name the plane that contains S and appears to be parallel to plane $P Q R$.

Example 2 Identify parallel and perpendicular lines

Use the diagram at the right to answer each question.
a. Name a pair of parallel lines.
b. Name a pair of perpendicular lines.
c. Is $\overleftrightarrow{A B} \perp \overleftrightarrow{B C}$? Explain.

Example 3 Identify angle relationships
Identify all pairs of (a) corresponding angles, (b) alternate interior angles,
(c) alternate exterior angles, and
(d) consecutive interior angles.

3.2 - Use Parallel Lines and Transversals

POSTULATE 15 CORRESPONDING ANGLES

 POSTULATEIf two parallel lines are cut by a transversal, then the pairs of corresponding angles are
-

Example 1 Identify congruent angles
The measure of three of the numbered angles is 125°. Identify the angles. Explain your reasoning.

Solution

By the Corresponding Angles Postulate,

\qquad $=125^{\circ}$.
Using the Vertical Angles Congruence Theorem,
\qquad $=125^{\circ}$.
Because $\angle 1$ and $\angle 5$ are corresponding angles, by the that ___ $=125^{\circ}$._, you know

1. If $m \angle 7=75^{\circ}$, find $m \angle 1, m \angle 3$, and $m \angle 5$. Tell which postulate or theorem you use in each case.

THEOREM 3.1 ALTERNATE INTERIOR ANGLES

 THEOREMIf two parallel lines are cut by a transversal, then the pairs of alternate interior angles are \qquad .

THEOREM 3.2 ALTERNATE EXTERIOR ANGLES

 THEOREMIf two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are \qquad .

THEOREM 3.3 CONSECUTIVE INTERIOR ANGLES

 THEOREMIf two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are
\qquad -

Example 2 Use properties of parallell limes

Find the value of x.

Example $3 \quad$ Solve a real-world problem

Runways A taxiway is being constructed that intersects two parallel runways at an airport. You know that $m \angle 2=98^{\circ}$. What is $m \angle 1$? How do you know?

2. Find the value of x.

3.3 - Prove Lines are Parallel

POSTULATE 16 CORRESPONDING ANGLES CONVERSE

If two lines are cut by a transversal so the corresponding angles are congruent, then the lines are
\qquad -.

Example 1 Apply the Corresponding Angles Converse

Find the value of x that makes $m \| n$.

(Checkpoint Find the value of x that makes $a \| b$.

$$
\text { 1. } \begin{aligned}
& \stackrel{(5 x-7)^{\circ}}{ } \\
& \stackrel{98^{\circ}}{ } \\
& \longleftrightarrow
\end{aligned}
$$

THEOREM 3.4 ALTERNATE INTERIOR ANGLES CONVERSE

If two lines are cut by a transversal so the alternate interior angles are congruent, then the lines are

\qquad .

THEOREM 3.5 ALTERNATE EXTERIOR ANGLES

 CONVERSEIf two lines are cut by a transversal so the alternate exterior angles are congruent, then the lines are

\qquad .

THEOREM 3.6 CONSECUTIVE INTERIOR ANGLES CONVERSE

If two lines are cut by a transversal so the consecutive interior angles are supplementary, then the lines are
\qquad .

If $\angle 3$ and $\angle 5$ are supplementary, then $j \| k$.
(Checkpoint Can you prove that lines a and 10 are parallel? Explain why or why not.
2. $m \angle 1+m \angle 2=180^{\circ}$

Your Notes

In paragraph

 proofs, transitional words such as so, then, and therefore help to make the logic clear.
Example 3 Write a paragraph proof

In the figure, $a \| b$ and $\angle 1$ is congruent to $\angle 3$. Prove $x \| y$.

Solution

Look at the diagram to make a plan. The diagram suggests that you look at angles

1 , 2, and 3. Also, you may find it helpful to focus on one pair of lines and one transversal at a time.

Plan for Proof
a. Look at $\angle 1$ and $\angle 2$.
b. Look at $\angle 2$ and $\angle 3$.

because $a \| b$.

$$
\text { If } \angle 2 \cong \angle 3 \text { then }
$$

\qquad -

Plan in Action

a. It is given that a $\| b$, so by the
\qquad ,$\angle 1 \cong \angle 2$.
b. It is also given that $\angle 1 \cong \angle 3$. Then \qquad by the Transitive Property of Congruence for angles. Therefore, by the \qquad
\qquad
\qquad ,$x \| y$.

THEOREM 3.7 TRANSITIVE PROPERTY OF PARALLEL LINES

If two lines are parallel to the same line, then they are \qquad to each other.

3.4 - Find and Use Slopes of Lines

Slope -

SLOPE OF LINES IN THE COORDINATE PLANE

Negative slope: \qquad from left to right as in line j

Positive slope: \qquad from left to right, as in line k

Undefined slope: \qquad , as in line n

Zero slope (slope of 0): \qquad , as in line ℓ

If the product of two numbers is -1 , then the numbers are called negative reciprocals.

v Checkpoint Use the graph in Example 1. Find the slope of the line.

1. line b	2. line d

POSTULATE 17 SLOPES OF PARALLEL LINES
In a coordinate plane, two nonvertical lines are parallel if and only if they have the same \qquad "

Any two \qquad lines are parallel.

$m_{1}=m_{2}$

POSTULATE 18 SLOPES OF PERPENDICULAR LINES

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is \qquad .

Horizontal lines are \qquad to vertical lines.

Example 2 Identify parallell lines

Find the slope of each line. Which lines are parallel?

Solution

Find the slope of \boldsymbol{k}_{1}.
$m=$

Find the slope of \boldsymbol{k}_{2}.
$m=$
Find the slope of k_{3}.
$m=$
3. Line c passes through (2, -2) and (5, 7). Line d passes through $(-3,4)$ and $(1,-8)$. Are the two lines parallel? Explain how you know.

Example 3 Draw a perpendicular line

Line h passes through $(1,-2)$ and $(5,6)$. Graph the line perpendicular to h that passes through the point $(2,5)$.
4. Line n passes through (1, 6) and (8,4). Line m passes through $(0,5)$ and $(2,12)$. Is $n \perp m$? Explain.

Example 4 Analyze graphs

Delivery A trucker made three deliveries. The graph shows the trucker's distance to the destination from the starting time to the arrival time for each delivery. Use slopes to make a statement about the deliveries.

The rate at which the trucker drives is represented by the \qquad of the segments. Segments \qquad and \qquad have the same slope, so deliveries a and c were driven at the same \qquad -

3.5 - Write and Graph Equations of Lines

Slope-intercept form -

Standard form -

Example 1 Write an equation of a line from a graph

Write an equation of the line in slope-intercept form.

Example 2 Write an equation of a parallel line
 Write an equation of the line passing through the point $(1,-1)$ that is parallell to the line with the equation $y=2 x-1$

1. Write an equation of the line in the graph at the right.

2. Write an equation of the line that passes through the point $(-2,5)$ and is parallell to the line with the equation $y=-2 x+3$.

Example 3 Write an equation of a perpendicular line
Write an equation of the line / passing through the point $(3,2)$ that is perpendicular to the line k with the equation $y=-3 x+1$.
3. Write an equation of the line passing through the point $(-8,-2)$ that is perpendicular to the line with the equation $y=4 x-3$.

Example 4 Write an equation of a line from a graph

Rent The graph models the total cost of renting an apartment.
Write an equation of the line.
Explain the meaning of the slope and the y-intercept of the line.

Example 6 Solve a real-world problem

Subscriptions You can buy a magazine at a store for \$3. You can subscribe yearly to the magazine for a flat fee of \$18. After how many magazines is the subscription a better buy?

3.6 - Prove Theorems about Perpendicular Lines

Distance from a point to a line -

THEOREM 3.8

If two lines intersect to form a linear pair of congruent angles, then the lines are \qquad . \qquad
If $\angle 1 \cong \angle 2$, then g \qquad h.

THEOREM 3.9

If two lines are perpendicular, then they intersect to form four \qquad -.
If $a \perp b$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are

\qquad .

Example 1 Draw conclusions

In the diagram at the right, $\angle 1 \cong \angle 2$.
What can you conclude about a and b ?
Solution

Lines a and b intersect to form a \qquad
\qquad , $\angle 1$ and $\angle 2$. So, by Theorem 3.8,
\qquad -

THEOREM 3.10

If two sides of two adjacent acute angles are perpendicular, then the angles are \qquad .

If $\overrightarrow{B A} \perp \overrightarrow{B C}$, then $\angle 1$ and $\angle 2$ are \qquad -
Example 2 Write a proof
In the diagram at the right, $\angle 1 \cong \angle 2$.
Prove that $\angle 3$ and $\angle 4$ are complementary.
Given $\angle 1 \cong \angle 2$
Prove $\angle 3$ and $\angle 4$ are complementary.

Statements	Reasons
1. $\angle 1 \cong \angle 2$	1. $\overline{\text { 2. }} \overline{\text { 2. Theorem } 3.8}$
3. $\angle 3$ and $\angle 4$ are complementary.	3.

1. If $c \perp d$, what do you know about the sum of the measures of $\angle 3$ and $\angle 4$? Explain.

2. Using the diagram in Example 2, complete the following proof that $\angle Q P S$ and $\angle 1$ are right angles.

Statements
Reasons

1. $\angle 1 \cong \angle 2$
2. $\overleftrightarrow{P S} \perp \overleftrightarrow{P Q}$
3. $\angle Q P S$ and $\angle 1$ are right angles.
4. \qquad
5. \qquad
6. \qquad
