2.1–Use Inductive Reasoning

- Conjecture –
- Inductive reasoning –
- Counterexample –

Example 1	Describe a visual pattern
	w to sketch the fourth figure in the pattern. I the fourth figure.
Figure 1	Figure 2 Figure 3

1. Sketch the fifth figure in the pattern in Example 1.

about the numbe of the points.	rorwa	iys to ct	meet u	linerent	pairs
Make a table and how the number of the pattern to ma	of conn	ections			pattern in ou can use
Number of points	1	2	3	4	5
Picture		•••	4	\square	
Number of connections					_?
	+	+	+	+	7

2. Describe the pattern in the numbers 1, 2.5, 4, 5.5, ... and write the next three numbers in the pattern.

Example 4 Make and test a conjecture

Numbers such as 1, 3, and 5 are called consecutive odd numbers. Make and test a conjecture about the sum of any three consecutive odd numbers.

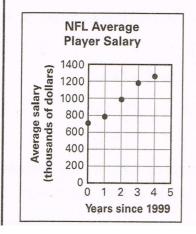
Example 5 Find a counterexample

A student makes the following conjecture about the difference of two numbers. Find a counterexample to disprove the student's conjecture.

Conjecture The difference of any two numbers is always smaller than the larger number.

Example 6 Making conjectures from data displays

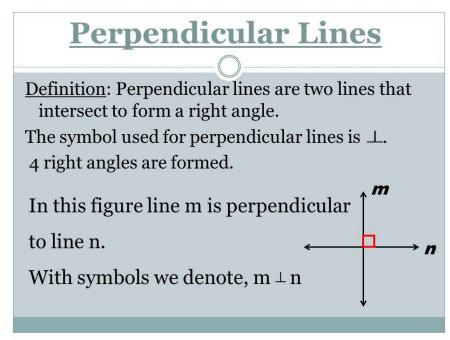
The scatter plot shows the average salary of players in the National Football League (NFL) since 1999. Make a conjecture based on the graph.



5. Find a counterexample to show that the following conjecture is false.

Conjecture The quotient of two numbers is always smaller than the dividend.

- 2.2 Analyze Conditional Statements
 - Conditional statement
 - If-then form
 - Negation
 - Conditional statement
 - Converse
 - o Inverse
 - **Contrapositive**
 - Equivalent Statements
 - Biconditional statements
 - Perpendicular Lines (Definition)



•
Example 1 Rewriting in If-Then Form
Rewrite the conditional statement in <i>if-then</i> form.
a. Three points are coplanar if they lie on the same plane.
b. Water freezes at temperatures below 32°F.
c. An even number is divisible by 2.
Example 2 Writing an Inverse, Converse, and Contrapositive
Write the (a) inverse, (b) converse, and (c) contrapositive of the following statement.
If the sun is shining, then we are not watching TV.
Solution
a. Inverse:
b. Converse:
c. Contrapositive:
Example 1 Using Definitions
Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.
a. $\angle KLJ$ and $\angle KJL$ are complementary.
b. \overrightarrow{KL} and \overrightarrow{LJ} are perpendicular.
c. $\angle MKJ$ is a right angle.
Example 2 Rewriting a Biconditional Statement
Rewrite the following biconditional statement as a conditional statement and its converse.
An angle is a straight angle if and only if its measure is 180°.
Example 3 Analyzing a Biconditional Statement
Consider the following statement: $x = 2$ if and only if $3x + 5x = 10x - 2x$.
a. Is this a biconditional statement? b. Is the statement true?

2.3 – Apply Deductive Reasoning

Deductive reasoning –

LAW OF DETACHMENT

If $p \rightarrow q$ is a true conditional statement and p is true, then

LAW OF SYLLOGISM

If $p \rightarrow q$ and $q \rightarrow r$ are true conditional statements, then

Example 3 Using the Law of Detachment

State whether the argument is valid.

- a. If Roger gets a part-time job, then he will buy a new bicycle. Roger buys a new bicycle. So, Roger got a part-time job.
- **b.** If two angles are vertical angles, then they are congruent. $\angle 1$ and $\angle 2$ are vertical angles. So, $\angle 1$ and $\angle 2$ are congruent.
- **5.** State whether the following argument is valid. If two adjacent angles form a straight angle, then the angles are supplementary. $\angle 1$ and $\angle 2$ are supplementary. So, you can conclude that $\angle 1$ and $\angle 2$ are adjacent.

Example 4 Using the Law of Syllogism

Write some conditional statements that can be made from the following true statements using the Law of Syllogism.

- 1. If a cat is the largest of all cats, then it can weigh 650 pounds.
- 2. If a cat lives in a pride, then it is a lion.
- 3. If a cat weighs 650 pounds, then it is a tiger.
- 4. If a cat is a tiger, then it hunts alone.
- 5. If a cat is a lion, then it can weigh 400 pounds.

2.4 – Use Postulates and Diagrams

POINT, LINE, AND PLANE POSTULATES		
Postulate 5	ostulate 5 Through any two points there exists exactly one	
Postulate 6	A line contains at least two	
Postulate 7	If two lines intersect, then their intersection is	
Postulate 8	Through any three points there exists exactly one plane.	
Postulate 9	A plane contains at least three points.	
Postulate 10	If two points lie in a plane, then the line containing them	
Postulate 11	If two planes intersect, then their intersection is a	
•	•	

Example 1	Identify a postulate illustrated by a diagram
State the p	ostulate illustrated by the diagram.
	then $A_{\bullet} B_{\bullet}$ C_{\bullet}

Use the diagram to write examples of Postulates 9 and 11.

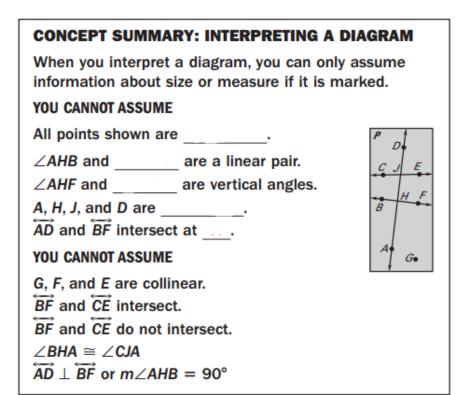
Postulate 9 Plane ____ contains at least three noncollinear points,

Postulate 11 The intersection of plane *P* and plane *Q* is _____.

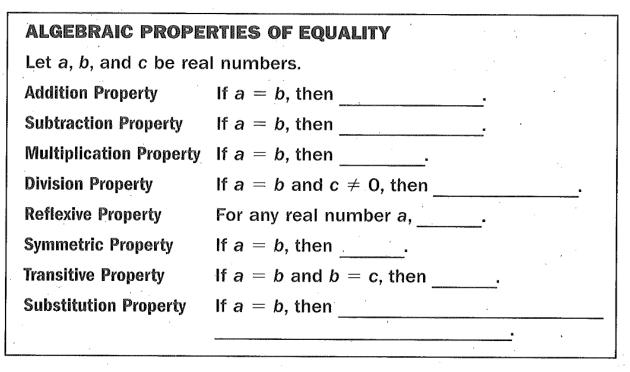
a X

•W

- **1.** Which postulate allows you to say that the intersection of line *a* and line *b* is a point?
- 2. Write examples of Postulates 5 and 6.



2.5 – Reason Using Properties from Algebra



Example 1 Writing Reasons

Checkpoint Solve the equation. Write a reason for each step.

1. 12x - 3(x + 7) = 8x

PROPERT	IES OF EQUALITY	
	Segment Length	Angle Measure
Reflexive	For any segment AB,	For any angle A,
Symmetric	If $AB = CD$, then	If $m \angle A = m \angle B$, then
Transitive	If $AB = CD$ and $CD = EF$, then	If $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then
	· · ·	

Example 3 Using Properties of Measure	
Use the information at $m\angle 1 + m\angle 2 + m\angle 2 + m\angle 2 + m\angle 2 + m\angle 3 = m\angle 1 = m\angle 4$	$m \angle 3 + m \angle 4 = 360^{\circ}$ $m \angle 4$
Solution	· · ·
$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = _________________________________$	Given Given Given Substitution property of equality Simplify. Division property of equality Transitive property of equality
Checkpoint Complete the following exercise	ie.
2. In the diagram at the right, <i>B</i> is the midpoint of \overline{AC} and <i>C</i> is the midpoint of \overline{BD} . Show that $AB = CD$.	B C D

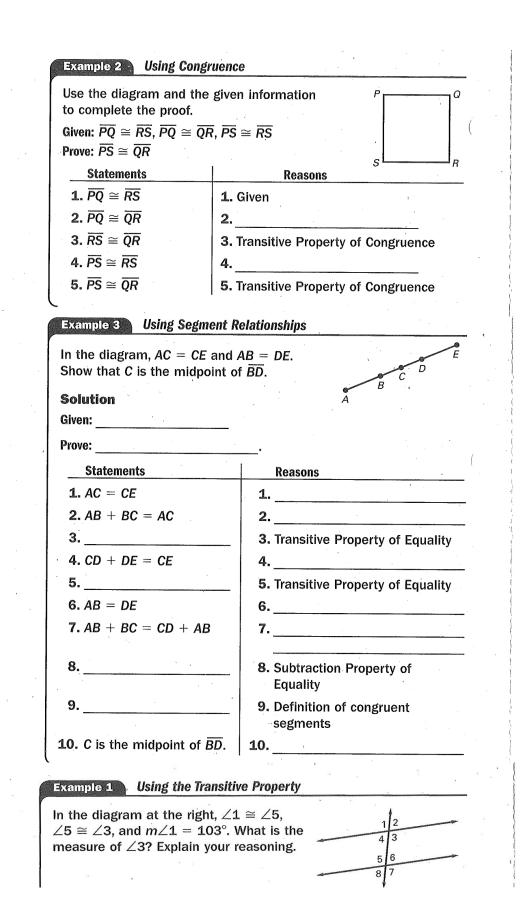
1

1

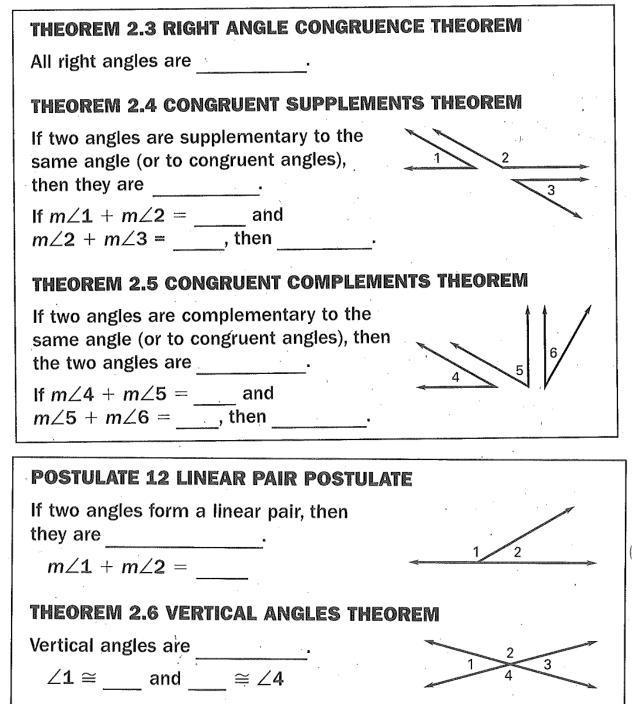
2.6 – Prove Statements about Segments and Angles

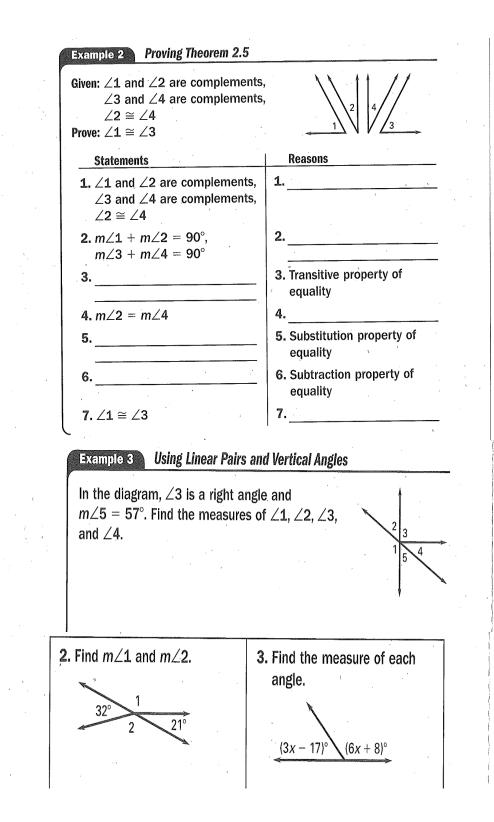
• Proof –

THEOREM 2.2 PROPERTIES OF ANGLE CONGRUENCE Angle congruence is reflexive, symmetric, and transitive. For any angle A, _____. Reflexive Symmetric If $\angle A \cong \angle B$, then _____. Transitive If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then **THEOREM 2.1 PROPERTIES OF SEGMENT CONGRUENCE** For any segment AB, Reflexive If $\overline{AB} \cong \overline{CD}$, then _____. Symmetric If $\overline{AB} \cong \overline{CD}$, and $\overline{CD} \cong \overline{EF}$, then Transitive Example 1 Transitive Property of Segment Congruence You can prove the Transitive Property of Segment Congruence as follows. Given: $\overline{JK} \cong \overline{MN}, \overline{MN} \cong \overline{PQ}$ M Prove: $\overline{JK} \cong \overline{PQ}$ Statements Reasons **1.** $\overline{JK} \cong \overline{MN}, \overline{MN} \cong \overline{PQ}$ 1. **2.** JK = MN, MN = PQ2. 3.____ **3.** Transitive property of equality 4. $\overline{JK} \cong \overline{PQ}$ 4. Definition of congruent segments



2.7 – Prove Angle Pair Relationships





Geometry