Algebra II – Chapter 7

7.1: Graph Exponential Growth Functions

- Have you heard of growing exponentially?
- An exponential function has the form $y = ab^x$, where b is a positive number (not 1)

Exponential growth function:

Examples - Graph the function. State the domain and range.

1)
$$y = 4^{x}$$

2) $y = \frac{1}{2} * 3^{x}$
3) $f(x) = 3^{x+1} + 2$

7.2: Graph Exponential Decay Functions

The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

Graph

1)
$$y = \left(\frac{2}{3}\right)^{x}$$

2) $y = -2\left(\frac{3}{4}\right)^{x}$

Graph – state the domain and range

3)
$$y = \left(\frac{1}{4}\right)^{x-1} + 1$$

4) $g(x) = -3\left(\frac{3}{4}\right)^{x-5} + 4$

7.3: Use Functions Involving e

In math, we have special numbers: π , *i*, *e*. Natural base, e, is known as the Euler number

Euler number is irrational. It's definition is: As n approaches $+\infty$, $\left(1+\frac{1}{n}\right)^n$ approaches $e \approx$

2.71828182

Simplify the expression:

- 1) $e^7 * e^4$
- 2) $2e^{-3} \cdot 6e^{5}$
- 3) $\frac{24e^8}{4e^5}$
- 4) $(10e^{-4x})^3$
- 5) Exponential growth or decay?
 - $y = 1/2e^{4x}$
 - $y = 2e^{-5x}$

Graph. State the domain and range.

5.
$$y = 2e^{0.5x}$$

$$6. y = 1.5e^{0.25(x-1)} - 2$$

7.1 & 7.3 Interest

7.1 - Exponential growth model

Exponential Growth Models

• When a real-life quantity increases by a fixed percent each year (or other period of time), the amount, *y*, after *t* years can be modeled by the equation:

$$y = a(1+r)^t$$

Growth Factor

a is the initial amount, r is the percent increase

- From 1997 to 2002, the number n (in millions) of DVD players sold in the US can be modeled by n=0.42(2.47)^t where t is the number of years since 1997. Identify the initial amount, the growth factor, and the annual percent increase. Graph and estimate the number of DVD players sold in 2001.
- **7.1 Compound Interest** is calculated using exponential growth functions.

1) You deposit \$2000 in an account that pays 4% interest. Find the balance after 3 years if the interest is compounded daily.

7.3 - Continuously Compounded Interest

2) You deposit \$2500 in an account that pays 5% annual interest compounded continuously. Find the balance after:

- 5 years
- 25 years

7.4: Evaluate Logarithms and Graph Logarithmic Functions

Logarithmic Functions		
Any function of the form		
$f(x) = \log_b x$ where the		
logarithm of base b is defined as		
follows $(b > 0 \text{ and } b \neq 1)$		
$y = \log_b x \Leftrightarrow b^y = x$		

The logarithm goes to the basement to find the answer which equals the exponent.

Rewrite in exponential form or evaluate without using a calculator:

- 1) $\log_3 81 = 4$
- 2) $\log_7 7 = 1$
- 3) log₅ 0.2
- 4) log₃₆ 6
- 5) Use a calculator to evaluate: log 0.746

- 6) Simplify: $7^{(\log_7 x)}$
- 7) Simplify: $\log_5 125^x$
- 8) Find the inverse of the function: $y = 2^x 3$
- 9) Graph: $y = \log_6 x$

7.5: Apply Properties of Logarithms

Property	Definition	Example
Product	$\log_b mn = \log_b m + \log_b n$	$\log_3 9x = \log_3 9 + \log_3 x$
Quotient	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\log_{\frac{1}{4}} \frac{4}{5} = \log_{\frac{1}{4}} 4 - \log_{\frac{1}{4}} 5$
Power	$\log_b m^p = p \cdot \log_b m$	$\log_2 8^x = x \cdot \log_2 8$
Equality	If $\log_b m = \log_b n$, then $m = n$.	$log_{8}(3x-4) = log_{8}(5x+2)$ so, 3x - 4 = 5x+2

Use log 5 \approx 0.898 and log 8 $\,\approx\,$ 1.161 to evaluate:

1) $log(\frac{5}{8})$

2) log 40

- 3) Expand the expression: $3x^4$
- 4) Condense the expression: $\ln 4 + 3 \ln 3 \ln 12$

5) Evaluate using change of base: $\log_8 14$

7.6: Solve Exponential and Logarithmic Equations

If $b^x = b^y$ then x=y

- 1) Solve: $9^{2x} = 27^{x-1}$
- 2) Solve: $100^{7x+1} = 1000^{3x-2}$
- 3) Solve: $81^{3-x} = \left(\frac{1}{3}\right)^{5x-6}$

What if we can't rearrange? Then we use log or ln.

- 4) Solve: $2^x = 5$
- 5) Solve: $7^{9x} = 15$
- 6) Solve: $4e^{-0.3x} 7 = 13$

If $\log x = \log y$, then x=y

- 7) (5x+9) = 6x
- 8) ln (x + 19) = ln (7x + 8)
- 9) $\log_4(-x) + \log_4(x+10) = 2$

7.7: Write and Apply Exponential and Power Functions

Write an exponential function $y = ab^x$ whose graph passes through the given points:

(1,40), (3,640)

Use the points (x, y) to find a model for the data:

(1, 3, 3), (2, 10, 1), (3, 30, 6), (4, 92, 7), (5, 280, 9)

Write a power function $y = ax^b$ whose graph passes through the given points:

(3,14), (9,44)