Algebra II - Chapter 7

7.1: Graph Exponential Growth Functions

- Have you heard of growing exponentially?
- An exponential function has the form $y=a b^{x}$, where b is a positive number (not 1)

Exponential growth function:

Examples - Graph the function. State the domain and range.

1) $y=4^{x}$
2) $y=\frac{1}{2} * 3^{x}$
3) $f(x)=3^{x+1}+2$

7.2: Graph Exponential Decay Functions

The domain of $f(x)=b^{x}$ is all real numbers. The range is $y>0$.

Graph

1) $y=\left(\frac{2}{3}\right)^{x}$
2) $y=-2\left(\frac{3}{4}\right)^{x}$

Graph - state the domain and range
3) $y=\left(\frac{1}{4}\right)^{x-1}+1$
4) $g(x)=-3\left(\frac{3}{4}\right)^{x-5}+4$

7.3: Use Functions Involving e

In math, we have special numbers: π, i, e. Natural base, e , is known as the Euler number

Euler number is irrational. It's definition is: As n approaches $+\infty,\left(1+\frac{1}{n}\right)^{n}$ approaches $e \approx$ 2.71828182

Simplify the expression:

1) $e^{7} * e^{4}$
2) $2 e^{-3} \cdot 6 e^{5}$
3) $\frac{24 e^{8}}{4 e^{5}}$
4) $\left(10 e^{-4 x}\right)^{3}$
5) Exponential growth or decay?

- $y=1 / 2 e^{4 x}$
- $y=2 e^{-5 x}$

Graph. State the domain and range.
5. $y=2 e^{0.5 x}$
6. $y=1.5 e^{0.25(x-1)}-2$

7.1 \& 7.3 Interest

7.1 - Exponential growth model

Exponential Growth Models

- When a real-life quantity increases by a fixed percent each year (or other period of time), the amount, y, after t years can be modeled by the equation:

$$
\mathrm{y}=\mathrm{a}(\underbrace{1+\mathrm{r}}_{\text {Growth Factor }})^{\mathrm{t}}
$$

a is the initial amount, r is the percent increase

1) From 1997 to 2002, the number n (in millions) of DVD players sold in the US can be modeled by $\mathrm{n}=0.42(2.47)^{\wedge} \mathrm{t}$ where t is the number of years since 1997. Identify the initial amount, the growth factor, and the annual percent increase. Graph and estimate the number of DVD players sold in 2001.
7.1 - Compound Interest is calculated using exponential growth functions.

2) You deposit $\$ 2000$ in an account that pays 4% interest. Find the balance after 3 years if the interest is compounded daily.

7.3-ContinuouslyCompounded Interest

Amount
$\downarrow=$ Pe $^{\text {rit }}$ rate of interest in years
A mincipal the mathematical constant e
2) You deposit $\$ 2500$ in an account that pays 5\% annual interest compounded continuously. Find the balance after:

- 2 years
- 5 years
- 25 years

7.4: Evaluate Logarithms and Graph Logarithmic Functions

Logarithmic Functions

Any function of the form
$f(x)=\log _{b} x$ where the
logarithm of base b is defined as follows ($b>0$ and $b \neq 1$)

$$
y=\log _{b} x \quad \Leftrightarrow \quad b^{y}=x
$$

The logarithm goes to the basement to find the answer which equals the exponent.

Rewrite in exponential form or evaluate without using a calculator:

1) $\log _{3} 81=4$
2) $\log _{7} 7=1$
3) $\log _{5} 0.2$
4) $\log _{36} 6$
5) Use a calculator to evaluate: $\log 0.746$

| Common Logarithm |
| :---: | :---: | :---: |
| Using 10 as the base |
| $y=\log _{10} x=\log x$ | | Natural Logarithm |
| :---: |
| Using e as the base |
| $y=\log _{e} x=\ln x$ | | Inverse Property of Logs |
| :---: |
| $\log _{b} b^{x}=x$ |
| $b^{\log _{b} x}=x$ |

6) Simplify: $7^{\wedge}\left(\log _{7} x\right)$
7) Simplify: $\log _{5} 125^{x}$
8) Find the inverse of the function: $y=2^{x}-3$
9) Graph: $y=\log _{6} x$

Property	Definition	Example
Product	$\log _{b} m n=\log _{b} m+\log _{b} n$	$\log _{3} 9 x=\log _{3} 9+\log _{3} x$
Quotient	$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$	$\log _{\frac{1}{4}} \frac{4}{5}=\log _{\frac{1}{4}} 4-\log _{\frac{1}{4}} 5$
Power	$\log _{b} m^{p}=p \cdot \log _{b} m$	$\log _{2} 8^{x}=x \cdot \log _{2} 8$
Equality	If $\log _{b} m=\log _{b} n$, then $m=n$.	$\log _{8}(3 x-4)=\log _{8}(5 x+2)$ so, $3 x-4=5 x+2$

Use $\log 5 \approx 0.898$ and $\log 8 \approx 1.161$ to evaluate:

1) $\log \left(\frac{5}{8}\right)$
2) $\log 40$
3) Expand the expression: $3 x^{4}$
4) Condense the expression: $\ln 4+3 \ln 3-\ln 12$

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

5) Evaluate using change of base: $\log _{8} 14$

7.6: Solve Exponential and Logarithmic Equations

If $b^{x}=b^{y}$ then $\mathrm{x}=\mathrm{y}$

1) Solve: $9^{2 x}=27^{x-1}$
2) Solve: $100^{7 x+1}=1000^{3 x-2}$
3) Solve: $81^{3-x}=\left(\frac{1}{3}\right)^{5 x-6}$

What if we can't rearrange? Then we use log or \ln.
4) Solve: $2^{x}=5$
5) Solve: $7^{9 x}=15$
6) Solve: $4 e^{-0.3 x}-7=13$

If $\log x=\log y$, then $x=y$
7) $(5 x+9)=6 x$
8) $\ln (x+19)=\ln (7 x+8)$
9) $\log _{4}(-x)+\log _{4}(x+10)=2$
7.7: Write and Apply Exponential and Power Functions

Write an exponential function $y=a b^{x}$ whose graph passes through the given points:
$(1,40),(3,640)$

Use the points (x, y) to find a model for the data:
$(1,3.3),(2,10.1),(3,30.6),(4,92.7),(5,280.9)$

Write a power function $y=a x^{b}$ whose graph passes through the given points:
$(3,14),(9,44)$

