Algebra II - Chapter 4

4.1: Graph Quadratic Functions in Standard Form

Now we are going to switch from linear equations to quadratic equations. Quadratic equations are in the form: $x^{2}+b x+c=y$.

GRAPHING ANY QUADRATIC FUNCTION You can use the following properties to graph any quadratic function $y=a x^{2}+b x+c$, including a function where $b \neq 0$.
PEY CONCEPT

Graph the function. Compare to $y=x^{2}$. Label the vertex and axis of symmetry. Tell whether the function has a minimum of maximum value and state the value.

1) $y=5 x^{2}$
2) $y=4 x^{2}+1$
3) $y=3 x^{2}-6 x+4$
4) $f(x)=\frac{1}{2} x^{2}+x-3$

Standard Form: $y=a x^{2}+b x+c$ Vertex Form: $y=a(x-h)^{2}+k$

KEY CONCEPT

for Your Notebook
Graph of Vertex Form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$
The graph of $y=a(x-h)^{2}+k$ is the parabola $y=a x^{2}$ translated horizontally h units and vertically k units.
Characteristics of the graph of
$y=a(x-h)^{2}+k$

- The vertex is (h, k).
- The axis of symmetry is $x=h$.

- The graph opens up if $a>0$ and down if $a<0$.

1. Graph the function and label the vertex and axis of symmetry:

$$
\begin{aligned}
& y=(x+4)^{2}+2 \\
& y=-\frac{1}{4}(x+2)^{2}+1
\end{aligned}
$$

Remember FOIL and Factoring (unFOIL) ?

2. Write the quadratic function in standard form.

$$
\begin{aligned}
& f(x)=4(x+1)(x-6) \\
& y=-(x+6)^{2}+10
\end{aligned}
$$

4.3: Solve $x^{2}+b x+c=0$ by Factoring

- How can we factor: $x^{2}-3 x-18$?

Some special cases:

Difference of squares: $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$
Perfect squares: $\boldsymbol{a}^{2}+\mathbf{2 a b}+\boldsymbol{b}^{2}=(\boldsymbol{a}+\boldsymbol{b})^{2}$

Factor or tell if unfactorable:

1) $x^{2}-7 x+10$
2) $n^{2}-3 n+9$
3) $q^{2}-100$
4) $w^{2}-18 w+81$

Zero Product Property

Solve the equation:
5) $x^{2}+2 x-35=0$
6) $r^{2}+2 r=80$

4.4: Solve $a x^{2}+b x+c=0$ by Factoring

What happens if we have a number in front of the x^{2} term? We still factor!

Practice:

1) $3 n^{2}+7 n+4$
2) $4 r^{2}-25$
3) $25 t^{2}-30 t+9$

One way to help is to factor the monomial $1^{\text {st }}$...
4) $12 x^{2}-4 x-40$
5) $-\mathbf{8} \boldsymbol{y}^{2}+\mathbf{2 8} y-\mathbf{6 0}$

We can also solve if we remember that $A * B=0$, either $A=0$ or $B=0$
6) Solve $\mathbf{1 4} s^{2}-\mathbf{2 1} s=\mathbf{0}$
7) Solve: $4 s^{2}-20 x+25=0$

4.5: Solve Quadratic Equations Finding Square Roots

Do you remember square roots? Another way to solve quadratic equations is to find the square roots.

There are a few rules for square roots:

- Product Property: $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$
- Quotient Property: $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

Practice:

1) $\sqrt{27}$
2) $\sqrt{10} \cdot \sqrt{15}$
3) $\sqrt{\frac{15}{4}}$
4) $\frac{1}{5+\sqrt{6}}$

Solve
5) $5 x^{2}=80$
6) $z^{2}-7=29$
7) $3(x-2)^{2}=40$

4.6: Perform Operations with Complex Numbers

What happens when you want to take the square root of a negative number? Imaginary numbers!

$$
i=\sqrt{-1} \text { which means } i^{2}=-1
$$

So, $\sqrt{-3}=i \sqrt{3}$

You can also have a mixture of real and imaginary numbers, called a complex number, like $\mathbf{3}+\mathbf{8 i}$

Practice:

1) Solve: $\boldsymbol{x}^{2}+\mathbf{1 1}=\mathbf{3}$
2) Solve: $5 x^{2}+33=3$

When adding/subtracting/multiplying/dividing imaginary numbers, treat the \boldsymbol{i} like a variable, but remember $i^{2}=-1$
3) $(9-\boldsymbol{i})+(-6+7 \boldsymbol{i})$
4) $(3+7 i)-(8-2 i)$
5) $-\mathbf{4}-(\mathbf{1}+\boldsymbol{i})-(5+9 i)$
6) $\mathbf{6 i}(3+2 \boldsymbol{i})$
7) $(-1-5 i)(-1+5 i)$

4.7: Complete the Square

Another method to solve quadratics is to complete the square.

To complete the square for $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}$ add $\left(\frac{b}{2}\right)^{2}$

Practice:

Solve by square roots:

1) $x^{2}+6 x+9=36$
2) $x^{2}-10 x+25=1$
3) $x^{2}-\mathbf{2 4 x}+\mathbf{1 4 4}=\mathbf{1 0 0}$

Complete the square:
4) $x^{2}+22 x+c$

Solve the equation by completing the square:
5) $x^{2}+6 x+4=0$
6) $3 x^{2}+12 x-18=\mathbf{0}$
7) $4 p(p-2)=100$

4.8: Using the Quadratic Formula and the Discriminant

For any quadratic, you can use the quadratic formula to solve:

$$
\begin{gathered}
\text { Quadratic Formula } \\
\text { To Solve: } \mathbf{a x}^{2}+\mathbf{b x + c}=\mathbf{c}= \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\text { Eg } 2 x^{2}+11 x+6=0 \Rightarrow a=2 \quad b=11 \quad c=6 \\
x=\frac{-11 \pm \sqrt{11^{2}-4 \times 2 \times 6}}{2 \times 2} \quad \text { x }=\frac{-11 \pm \sqrt{73}}{4} \\
x=-0.614 \text { or }-4.886(3 \mathrm{dp})
\end{gathered}
$$

Intersections

Practice: Use the quadratic formula to solve the equation:

1) $x^{2}-6 x+7=0$
2) $7 x-5+12 x^{2}=-3 x$
3) Check using factoring: $z^{2}+15 z+24=-32$
4) Find the discriminate and tell the number of solutions: $5 x^{2}+16 x=11 x-3 x^{2}$

4.9: Graph and Solve Quadratic Inequalities

We can also graph the quadratic inequalities.

1) $y<-x^{2}$
2) $y>-2 x^{2}+9 x-4$
3) $y \geq 2 x^{2}$ and $y<-x^{2}+1$
4) $y>3 x^{2}+3 x-5$ and $y<-x^{2}+5 x+10$
5) Solve by graphing: $x^{2}+8 x \leq-7$
6) Solve by graphing: $-\frac{1}{2} x^{2}+4 x \geq 1$

4.10: Write Quadratic Functions and Models

Write a quadratic function in vertex form:

1. Vertex $(5,-4)$ Point $(1,20)$
2. Vertex (-1, -4) Point (2, -1)

Write a quadratic function in standard form:
3. $(-2,-4),(0,-10),(3,-7)$

