## Algebra II - Chapter 4

## 4.1: Graph Quadratic Functions in Standard Form - 7-31 odd

Now we are going to switch from linear equations to quadratic equations. Quadratic equations are in the form: $x^{2}+b x+c=y$.


## Practice:

Graph the function. Compare to $y=x^{2}$. Label the vertex and axis of symmetry.

1) $y=5 x^{2}$
2) $y=4 x^{2}+1$
3) $y=3 x^{2}-6 x+4$
4) $f(x)=\frac{1}{2} x^{2}+x-3$

## 4.3: Solve $x^{2}+b x+c=0$ by Factoring - 3-37 odd

Remember FOIL and unFOIL?

unFOIL: $x^{2}-3 x-18$

- Factors of 18 are 1,3 2, 9 3,6. Which factors can I use to make 3 ?
- $\quad(x-6)(x+3)=x^{2}-3 x-18$

Some special cases:

Difference of squares: $a^{2}-b^{2}=(a+b)(a-b)$

Perfect squares: $a^{2}+2 a b+b^{2}=(a+b)^{2}$

Practice:

Factor or tell if unfactorable:

1) $x^{2}-7 x+10$
2) $n^{2}-3 n+9$
3) $q^{2}-100$
4) $w^{2}-18 w+81$
5) $x^{2}+2 x-35=0$
6) $r^{2}+2 r=80$

## 4.4: Solve $a x^{2}+b x+c=0$ by Factoring - 3-39 odd

What happens if we have a number in front of the $x^{2}$ term? We still factor!

Practice:

1) $3 n^{2}+7 n+4$
2) $4 r^{2}-25$
3) $25 t^{2}-30 t+9$

One way to help is to factor the monomial $1^{\text {st }} \ldots$
4) $12 x^{2}-4 x-40$
5) $-8 y^{2}+28 y-60$

We can also solve if we remember that $A * B=0$, either $A=0$ or $B=0$
6) Solve $14 s^{2}-21 s=0$
7) Solve: $4 s^{2}-20 x+25=0$

## 4.5: Solve Quadratic Equations Finding Square Roots - 3-13,23-33 odd

Do you remember square roots? Another way to solve quadratic equations is to find the square roots.


There are a few rules for square roots:

$$
\begin{aligned}
& -\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b} \\
& -\quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{aligned}
$$

Practice:

1) $\sqrt{27}$
2) $\sqrt{10} \cdot \sqrt{15}$
3) $\sqrt{\frac{15}{4}}$

Solve
4) $5 x^{2}=80$
5) $z^{2}-7=29$
6) $3(x-2)^{2}=40$

## 4.6: Perform Operations with Complex Numbers - 3-27 odd

What happens when you want to take the square root of a negative number? Imaginary numbers!

$$
i=\sqrt{-1} \text { which means } i^{2}=-1
$$

So, $\sqrt{-3}=i \sqrt{3}$

You can also have a mixture of real and imaginary numbers, called a complex number, like $3+8 i$

Practice:

1) Solve: $x^{2}+11=3$
2) Solve: $5 x^{2}+33=3$

When adding/subtracting/multiplying/dividing imaginary numbers, treat the $i$ like a variable, but remember $i^{2}=-1$
3) $(9-i)+(-6+7 i)$
4) $(3+7 i)-(8-2 i)$
5) $-4-(1+i)-(5+9 i)$
6) $6 i(3+2 i)$
7) $(-1-5 i)(-1+5 i)$

## 4.7: Complete the Square - 3-33 odd

Another method to solve quadratics is to complete the square.

To complete the square for $x^{2}+b x$ add $\left(\frac{b}{2}\right)^{2}$

## Practice:

Solve by square roots:

1) $x^{2}+6 x+9=36$
2) $x^{2}-10 x+25=1$
3) $x^{2}-24 x+144=100$

Complete the square:
4) $x^{2}+22 x+c$

Solve the equation by completing the square:
5) $x^{2}+6 x+4=0$
6) $3 x^{2}+12 x-18=0$
7) $4 p(p-2)=100$
4.8: Using the Quadratic Formula and the Discriminant - 3-47 odd

For any quadratic, you can use the quadratic formula to solve:

$$
\begin{gathered}
\text { Quadratic Formula } \\
\text { To Solve: } \mathbf{a x ^ { 2 } + b x + c = 0} \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\text { Eg } 2 x^{2}+11 x+6=0 \quad a \quad a=2 \quad b=11 \quad c=6 \\
x=\frac{-11 \pm \sqrt{11^{2}-4 \times 2 \times 6}}{2 \times 2} \quad \text { x }=\frac{-11 \pm \sqrt{73}}{4} \\
x=-\mathbf{0 . 6 1 4} \text { or }-4.886(3 \mathrm{dp})
\end{gathered}
$$

## Intersections



Practice: Use the quadratic formula to solve the equation:

1) $x^{2}-6 x+7=0$
2) $7 x-5+12 x^{2}=-3 x$
3) Check using factoring: $z^{2}+15 z+24=-32$
4) Find the discriminate and tell the number of solutions: $5 x^{2}+16 x=11 x-3 x^{2}$

## 4.9: Graph and Solve Quadratic Inequalities - 7-25, 35-43 odd

We can also graph the quadratic inequalities.

Practice: Graph!

1) $y<-x^{2}$
2) $y>-2 x^{2}+9 x-4$
3) $y \geq 2 x^{2}$ and $y<-x^{2}+1$
4) $y>3 x^{2}+3 x-5$ and $y<-x^{2}+5 x+10$
5) Solve by graphing: $x^{2}+8 x \leq-7$
6) Solve by graphing: $-\frac{1}{2} x^{2}+4 x \geq 1$
