5 Different Ways to Solve Quadratics in Standard Form

Remember that "to solve" means to find the x-intercepts.

X-intercepts are also called: Zeros , roots , solutions

Standard Form	Vertex Form	Factored Form
$f(x) = ax^{2} + bx + c$ a, b, and c are real numbers	$f(x) = (x - h)^{2} + k$ $Vertex = (h, k)$	$f(x) = (x \pm m)(x \pm n)$ m and n are real numbers

From a graph:

1.

2.

Solutions: X = -2, -4

Solutions: X = -1, 4

Factoring

3.
$$x^2 + 5x + 6 = 0$$

$$(x+2)(x+3)=0$$

$$X=-2$$
 $X=-3$

4.
$$x^2 - 3x - 10 = 0$$

$$(x - 5)(x + 2) = 0$$

$$x-5=0$$
 or $x+2=0$

$$X=5$$
 or $X=-2$

Take Square Root of Both Sides

5.
$$(x + 5)^2 = 16$$

$$\sqrt{(x+5)^2} = \pm \sqrt{16}$$

 $x+5 = \pm 4$
 $x = -5 \pm 4$
 $x = -9 \text{ or } x = -1$

6.
$$(x-3)^2 = 81$$

$$\sqrt{(x-3)^2} = \pm \sqrt{81}$$

$$x-3 = \pm 9$$

$$x = 3 \pm 9$$

$$x = -6 \text{ or } 12$$

Complete the Square, then Take Square Root of Both Sides

7.
$$x^{2} + 8x - 30 = 0$$

 $\chi^{2} + 8x = 30$ $(\frac{8}{2})^{2} = 16$
 $\chi^{2} + 8x + 16 = 30 + 16$
 $(x+4)^{2} = 46$
 $\sqrt{(x+4)^{2}} = \pm \sqrt{46}$
 $\chi + 4 = \pm \sqrt{46}$

8.
$$x^2 - 6x = 7$$

$$\chi^{2}$$
-6x+9 = 7+9
 $(x-3)^{2}$ = 16
 $\sqrt{(x-3)^{2}}$ = $\pm\sqrt{16}$
 $x-3$ = ±4
 x = 3 ±4
 x = -1 or \mp 1

Quadratic Formula

9.
$$x^2 + 5x + 2 = 0$$

 $a = 1$ $b = 5$ $c = 2$ $x = -5 \pm \sqrt{5^2 - 4(1)(2)}$
 $x = -5 \pm \sqrt{17}$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

STEPS:

- 1. Identify a, b, and c.
- 2. Substitute these values into the formula. 3. Put only $(b)^2$ -4(a)(c) into the calculator,
- not the square root sign. 4. Take the square root of this value if the answer is a whole number. Otherwise,

leave it as a square root.

5. Write the solution.

10.
$$x^2 - 5x - 14 = 0$$

$$X = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)}$$

$$X = \frac{5 \pm \sqrt{81}}{2}$$

$$X = \frac{5 \pm 9}{2}$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-5)^2 - 4(1)(-14)$$

$$(-6)^2 - 4(1)(-14)$$

$$(-7)^2 - 4(1)(-14)$$

$$(-7)^2 - 4(1)(-14)$$

$$(-7)^$$

52-4(1)(2)

25 -8

$$X = \frac{5+9}{2} = 7$$
 $X = \frac{5-9}{2} = -2$